121 research outputs found

    Projects, participation and planning across boundaries in Göttingen

    Get PDF
    This paper explores efforts to coordinate strategies promoting sustainable development – with specific focus on mobility and transport in climate change mitigation – across administrative boundaries in the city and county of Göttingen, Germany. The paper questions the possibility to develop and align strategic objectives and implementation across administrative boundaries when relying on short-term project funds. The experiences of key stakeholders in Göttingen are presented, with reference to empirical data from a document and interview study. Results indicate that reliance on short-term, project-based funding from external sources offers both opportunities and challenges for locally and regionally integrated strategy formulation and implementation. Five factors shaping the strategy space of actors are used to frame the analysis, with findings suggesting the need for further research on how local authorities overcome capacity and resource limitations, particularly with respect to complex challenges such as climate change

    Do interactions increase or reduce the conductance of disordered electrons? It depends!

    Get PDF
    We investigate the influence of electron-electron interactions on the conductance of two-dimensional disordered spinless electrons. By using an efficient numerical method which is based on exact diagonalization in a truncated basis of Hartree-Fock states we are able to determine the exact low-energy properties of comparatively large systems in the diffusive as well as in the localized regimes. We find that weak interactions increase the d.c. conductance in the localized regime while they decrease the d.c. conductance in the diffusive regime. Strong interactions always decrease the conductance. We also study the localization of single-particle excitations close to the Fermi energy which turns out to be only weakly influenced by the interactions.Comment: final version as publsihed, 4 pages REVTEX, 6 EPS figures include

    Conjugacy of one-dimensional one-sided cellular automata is undecidable

    Full text link
    Two cellular automata are strongly conjugate if there exists a shift-commuting conjugacy between them. We prove that the following two sets of pairs (F,G)(F,G) of one-dimensional one-sided cellular automata over a full shift are recursively inseparable: (i) pairs where FF has strictly larger topological entropy than GG, and (ii) pairs that are strongly conjugate and have zero topological entropy. Because there is no factor map from a lower entropy system to a higher entropy one, and there is no embedding of a higher entropy system into a lower entropy system, we also get as corollaries that the following decision problems are undecidable: Given two one-dimensional one-sided cellular automata FF and GG over a full shift: Are FF and GG conjugate? Is FF a factor of GG? Is FF a subsystem of GG? All of these are undecidable in both strong and weak variants (whether the homomorphism is required to commute with the shift or not, respectively). It also immediately follows that these results hold for one-dimensional two-sided cellular automata.Comment: 12 pages, 2 figures, accepted for SOFSEM 201

    Topological stability criteria for networking dynamical systems with Hermitian Jacobian

    Get PDF
    The central theme of complex systems research is to understand the emergent macroscopic properties of a system from the interplay of its microscopic constituents. The emergence of macroscopic properties is often intimately related to the structure of the microscopic interactions. Here, we present an analytical approach for deriving necessary conditions that an interaction network has to obey in order to support a given type of macroscopic behaviour. The approach is based on a graphical notation, which allows rewriting Jacobi's signature criterion in an interpretable form and which can be applied to many systems of symmetrically coupled units. The derived conditions pertain to structures on all scales, ranging from individual nodes to the interaction network as a whole. For the purpose of illustration, we consider the example of synchronization, specifically the (heterogeneous) Kuramoto model and an adaptive variant. The results complete and extend the previous analysis of Do et al. (2012 Phys. Rev. Lett. 108, 194102)

    Quantum and frustration effects on fluctuations of the inverse compressibility in two-dimensional Coulomb glasses

    Full text link
    We consider interacting electrons in a two-dimensional quantum Coulomb glass and investigate by means of the Hartree-Fock approximation the combined effects of the electron-electron interaction and the transverse magnetic field on fluctuations of the inverse compressibility. Preceding systematic study of the system in the absence of the magnetic field identifies the source of the fluctuations, interplay of disorder and interaction, and effects of hopping. Revealed in sufficiently clean samples with strong interactions is an unusual right-biased distribution of the inverse compressibility, which is neither of the Gaussian nor of the Wigner-Dyson type. While in most cases weak magnetic fields tend to suppress fluctuations, in relatively clean samples with weak interactions fluctuations are found to grow with the magnetic field. This is attributed to the localization properties of the electron states, which may be measured by the participation ratio and the inverse participation number. It is also observed that at the frustration where the Fermi level is degenerate, localization or modulation of electrons is enhanced, raising fluctuations. Strong frustration in general suppresses effects of the interaction on the inverse compressibility and on the configuration of electrons.Comment: 15 pages, 18 figures, To appear in Phys. Rev.

    Interacting electrons in a one-dimensional random array of scatterers - A Quantum Dynamics and Monte-Carlo study

    Full text link
    The quantum dynamics of an ensemble of interacting electrons in an array of random scatterers is treated using a new numerical approach for the calculation of average values of quantum operators and time correlation functions in the Wigner representation. The Fourier transform of the product of matrix elements of the dynamic propagators obeys an integral Wigner-Liouville-type equation. Initial conditions for this equation are given by the Fourier transform of the Wiener path integral representation of the matrix elements of the propagators at the chosen initial times. This approach combines both molecular dynamics and Monte Carlo methods and computes numerical traces and spectra of the relevant dynamical quantities such as momentum-momentum correlation functions and spatial dispersions. Considering as an application a system with fixed scatterers, the results clearly demonstrate that the many-particle interaction between the electrons leads to an enhancement of the conductivity and spatial dispersion compared to the noninteracting case.Comment: 10 pages and 8 figures, to appear in PRB April 1

    Coulomb gap in a model with finite charge transfer energy

    Full text link
    The Coulomb gap in a donor-acceptor model with finite charge transfer energy Δ\Delta describing the electronic system on the dielectric side of the metal-insulator transition is investigated by means of computer simulations on two- and three-dimensional finite samples with a random distribution of equal amounts of donor and acceptor sites. Rigorous relations reflecting the symmetry of the model presented with respect to the exchange of donors and acceptors are derived. In the immediate neighborhood of the Fermi energy μ\mu the the density of one-electron excitations g(ϵ)g(\epsilon) is determined solely by finite size effects and g(ϵ)g(\epsilon) further away from μ\mu is described by an asymmetric power law with a non-universal exponent, depending on the parameter Δ\Delta.Comment: 10 pages, 6 figures, submitted to Phys. Rev.

    Single-particle excitations under coexisting electron correlation and disorder: a numerical study of the Anderson-Hubbard model

    Full text link
    Interplay of electron correlation and randomness is studied by using the Anderson-Hubbard model within the Hartree-Fock approximation. Under the coexistence of short-range interaction and diagonal disorder, we obtain the ground-state phase diagram in three dimensions, which includes an antiferromagnetic insulator, an antiferromagnetic metal, a paramagnetic insulator (Anderson-localized insulator) and a paramagnetic metal. Although only the short-range interaction is present in this model, we find unconventional soft gaps in the insulating phases irrespective of electron filling, spatial dimensions and long-range order, where the single-particle density of states (DOS) vanishes with a power-law scaling in one dimension (1D) or even faster in two dimensions (2D) and three dimensions (3D) toward the Fermi energy. We call it soft Hubbard gap. Moreover, exact-diagonalization results in 1D support the formation of the soft Hubbard gap beyond the mean-field level. The formation of the soft Hubbard gap cannot be attributed to a conventional theory by Efros and Shklovskii (ES) owing the emergence of soft gaps to the long-range Coulomb interaction. Indeed, based on a picture of multivalley energy landscape, we propose a phenomenological scaling theory, which predicts a scaling of the DOS in perfect agreement with the numerical results. We further discuss a correction of the scaling of the DOS by the long-range part of the Coulomb interaction, which modifies the scaling of Efros and Shklovskii. Furthermore, explicit formulae for the temperature dependence of the DC resistivity via variable-range hopping under the influence of the soft gaps are derived. Finally, we compare the present theory with experimental results of SrRu_{1-x}Ti_xO_3.Comment: 22 pages, 19 figure

    Infusing Sodium Bicarbonate Suppresses Hydrogen Peroxide Accumulation and Superoxide Dismutase Activity in Hypoxic-Reoxygenated Newborn Piglets

    Get PDF
    The effectiveness of sodium bicarbonate (SB) has recently been questioned although it is often used to correct metabolic acidosis of neonates. The aim of the present study was to examine its effect on hemodynamic changes and hydrogen peroxide (H(2)O(2)) generation in the resuscitation of hypoxic newborn animals with severe acidosis.Newborn piglets were block-randomized into a sham-operated control group without hypoxia (n = 6) and two hypoxia-reoxygenation groups (2 h normocapnic alveolar hypoxia followed by 4 h room-air reoxygenation, n = 8/group). At 10 min after reoxygenation, piglets were given either i.v. SB (2 mEq/kg), or saline (hypoxia-reoxygenation controls) in a blinded, randomized fashion. Hemodynamic data and blood gas were collected at specific time points and cerebral cortical H(2)O(2) production was continuously monitored throughout experimental period. Plasma superoxide dismutase and catalase and brain tissue glutathione, superoxide dismutase, catalase, nitrotyrosine and lactate levels were assayed.Two hours of normocapnic alveolar hypoxia caused cardiogenic shock with metabolic acidosis (PH: 6.99 ± 0.07, HCO(3)(-): 8.5 ± 1.6 mmol/L). Upon resuscitation, systemic hemodynamics immediately recovered and then gradually deteriorated with normalization of acid-base imbalance over 4 h of reoxygenation. SB administration significantly enhanced the recovery of both pH and HCO(3-) recovery within the first hour of reoxygenation but did not cause any significant effect in the acid-base at 4 h of reoxygenation and the temporal hemodynamic changes. SB administration significantly suppressed the increase in H(2)O(2) accumulation in the brain with inhibition of superoxide dismutase, but not catalase, activity during hypoxia-reoxygenation as compared to those of saline-treated controls.Despite enhancing the normalization of acid-base imbalance, SB administration during resuscitation did not provide any beneficial effects on hemodynamic recovery in asphyxiated newborn piglets. SB treatment also reduced the H(2)O(2) accumulation in the cerebral cortex without significant effects on oxidative stress markers presumably by suppressing superoxide dismutase but not catalase activity
    • …
    corecore