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The central theme of complex systems research is understanding the emergent macroscopic

properties of a system from the interplay of its microscopic constituents. The emergence

of macroscopic properties is often intimately related to the structure of the microscopic

interactions. Here, we present an analytical approach for deriving necessary conditions

an interaction network has to obey in order to support a given type of macroscopic be-

havior. The approach is based on a graphical notation, which allows rewriting Jacobi’s

signature criterion in an interpretable form and which can be applied to many systems of

symmetrically coupled units. The derived conditions pertain to structures on all scales,

ranging from individual nodes to the interaction network as a whole. For the purpose of

illustration, we consider the example of synchronization, specifically the (heterogeneous)

Kuramoto model and an adaptive variant. The results complete and extend the previous

analysis of Do et al. [Phys. Rev. Lett. 108: 194102 (2012)].

Key Words: 34D06, 47B15, 05C83

Characterizing the behavior of complex systems, and discovering the critical boundaries

in parameter space at which qualitative changes occur are central interests of statistical

physics. Many studies have revealed that, in specific models, this can be achieved by the

instruments of nonlinear dynamics [25, 5, 42, 15]. However, applying these tools to large

heterogeneous systems, such as complex networks of dynamical units poses significant

challenges [6, 32, 33, 14]. In particular, there is no simple way to capture the structural

aspects of such systems, which are known to crucially influence the emergent dynamics

[8, 17].

The interplay of dynamics and structure in networking systems has extensively been

studied using the example of synchronization [37, 8, 4]. The paradigmatic model proposed

by Kuramoto [24, 1] revealed that the synchronizability of a network depends on global

topological measures such as the clustering coefficient, the diameter, and the degree or

weight distribution [30, 43, 36, 21, 10, 34, 29], but also on local and mesoscale details

[4, 35, 31]. This indicates that a conceptual understanding of collective phenomena on
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dynamical networks can only be achieved if structural properties on all scales are taken

into account.

In a recent paper, we proposed a nonlinear dynamics approach, which allows to study

the dependence of dynamics on structure in networks of symmetrically coupled units

[13]. We showed that Jacobi’s signature criterion (JSC) can be used to determine neces-

sary conditions an interaction network has to obey in order to support a given type of

macroscopic behavior. These conditions pertain to subgraphs on all scales, from few node

subgraphs to the entire network. In this paper, we complete and extend the analysis of

[13]. We present the full derivation of the proposed approach and discuss a number of

new applications including an adaptive Kuramoto model.

1 Stability in networks of phase-oscillators

The approach outlined below is applicable for all dynamical systems with Hermitian Jaco-

bian matrices, and in particular to all networks of symmetrically-coupled one-dimensional

dynamical units. However, for the sake of illustration, we will be considering specifically

the example of N coupled phase oscillators

ẋi = ωi +
∑

j 6=i

Aij sin(xj − xi) , ∀i ∈ 1 . . . N . (1.1)

Here, xi and ωi denote the phase and the intrinsic frequency of node i, while A ∈ R
N×N

is the coupling matrix of an undirected, weighted interaction network. Two oscillators i, j

are thus connected if Aij = Aji 6= 0. Equation (1.1) represents the so-called Kuramoto

model, that is today considered to be a paradigm for the study of synchronization phe-

nomena in coupled discrete systems [1], and is, therefore, used as the natural benchmark

for comparative evaluations of performances of methods and tools. The model can exhibit

phase-locked states, which correspond to steady states of the governing system of equa-

tions. The local stability of such states is determined by the eigenvalues of the Jacobian

matrix J ∈ R
N×N defined by Jik = ∂ẋi/∂xk. If all eigenvalues of J are negative, then

the state under consideration is asymptotically stable.

In systems of symmetrically coupled phase oscillators, the Jacobian J is symmetric

and thus admits analysis by Jacobi’s signature criterion (JSC). The JSC (also known

as Sylvester criterion) states that a hermitian or symmetric matrix J with rank r has r

negative eigenvalues if and only if all principal minors of order q 6 r have the sign of (−1)q

[44]. Here, the principal minor of order q is defined as Dq := det (Jik), i, k = s1, . . . , sq.

Stability analysis by means of JSC is well-known in control theory [28] and has been

applied to problems of different fields from fluid- and thermodynamics to offshore en-

gineering [7, 41, 9]. However, the applicability of JSC is presently limited to systems

with few degrees of freedom. For system with many degrees of freedom the analytical

evaluation of JSC is impeded by the growth of both, a) the number of determinants that

have to be checked, and b) the number of terms in each determinant.

Let us first consider difficulty (a) stated above. Applying the sufficient condition is

impracticable for most larger systems. Note, however, that demanding sgn (Dq) = (−1)q

for some q already yields a necessary condition for stability.

The necessary stability condition that is found by considering a principal minor of
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given order q depends on the ordering of variables, i.e., the ordering of rows and columns

in the Jacobian. By considering different orderings the number of conditions obtained

for a given q can therefore be increased [12]. To distinguish minors that are based on

different orderings of the variables, we define S = {s1, . . . , sq} as a set of |S| = q indices

and D|S|,S as the determinant of the submatrix of J, which is spanned by the variables

xs1 , . . . , xsq . Therewith, the conditions for stability read

sgn
(
D|S|,S

)
= (−1)|S|, ∀S, |S| = 1, . . . , r. (1.2)

2 Graphical notation

Considering necessary rather than sufficient conditions evades difficulty (b) mentioned

above, which leaves us to deal with difficulty (a), i.e., the combinatorial explosion of

terms that are needed to write out the conditions for increasing |S|. In the common

notation, more than 700 terms are necessary for expressing the minors of order 6. For

circumventing this problem we employ a graphical notation that captures basic intuition

and allows for expressing the minors in a concise way [13].

The graphical notation relies on a topological reading of the minors. We interpret the

Jacobian J as the weight matrix of an undirected, weighted graph G. A Jacobian element

Jij then corresponds to the weight of a link connecting nodes i and j. We can now relate

products of the Jacobian elements to subgraphs of G spanned by the respective links. For

instance JijJjk is interpreted as path i− j − k, JijJjkJki as a closed path from i to j to

k and back to i. Thus, the minors of J can be expressed as sums over subgraphs of G.

In Appendix A, we show that every term occurring in a minor D|S|,S of J corresponds

to a subgraph that can be decomposed in cycles of G. This allows expressing the index

structure of every term by a combination of symbols denoting cycles of a given length.

The idea is now to supplement the basis of symbols with a summation convention; This

convention is designed such that all algebraic terms that are structurally identical and

only differ by index permutations can be captured in one symbolic term, which drastically

reduces the complexity of the minors.

Below, we use the following definitions: The basis of symbols is given by×, |,△,2,D, . . .

denoting cycles of length n = 1, 2, 3, 4, 5, . . .. The summation convention stipulates that

in a minor D|S|,S , every product of symbols denotes the sum over all non-equivalent

possibilities to build the depicted subgraph with the nodes ∈ S (cf. Fig. 1). With these

conventions the first 4 principal minors can be written as

D1,S = × (2.1 a)

D2,S = × · × − | (2.1 b)

D3,S = × · × · × − × · |+ 2△ (2.1 c)

D4,S = × · × · × · × − × · × · |+ | · |+ 2× ·△ − 22 (2.1 d)

More generally

D|S|,S =
∑

all combinations of symbols with
∑

n = |S| , (2.2)

where symbols with n > 2 appear with a factor of 2 that reflects the two possible

orientations in which the corresponding subgraphs can be paced out. Symbols with an
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Figure 1. Example for the graphical notation. Shown are the minors of the matrix (2.3)

in algebraic, and graphical notation, and, for each term, the corresponding subgraph of

a three-node graph G. Here, as well as in the next figures, filled symbols correspond to

nodes ∈ S, open symbols to nodes /∈ S.

even (odd) number of links carry a negative (positive) sign related to the sign of the

respective index permutation in the Leibniz formula for determinants [2].

An example for the graphical notation is presented in Fig. 1. The figure displays the

three principal minors of the symmetric 3× 3 matrix

J=





J11 J12 J13
J12 J22 J23
J13 J23 J33



 (2.3)

in algebraic, and graphical notation. Moreover, it displays for each term the corresponding

subgraph of a three-node graph G.

3 Zero row sum

In many systems, including the standard Kuramoto model, fundamental conservation

laws impose a zero-row-sum condition, such that Jii = −
∑

j 6=i Jij . Using this relation,

we can remove all occurrences of elements Jii from the Jacobian and its minors [13]. In

the topological reading, this substitution changes the graph G by replacing a self-loop at

a node i by the negative sum over all links that connect to i.

The simplification of the minors due to the zero-row-sum condition can be understood

using the example of the Eqs. (2.1). Replacing the self-loops, the first term of every minor

D|S|,S , ×
|S|, is (−1)|S| times the sum over all subgraphs meeting the following conditions:

(i) the subgraph contains exactly |S| links, and (ii) it can be drawn by starting each

(undirected) link at a different node in S. By means of elementary combinatorics it can

be verified that all other terms of D|S|,S cancel exactly those subgraphs in ×|S| that
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 node   node

1
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Figure 2. Symbolic calculation of a minor using the zero-row-sum condition. Shown is

the graph G, defined by the off-diagonal entries of Eq. (3.3). The terms of the minor D4,S

can be written as × · × · × · × = A + B + C + 2D, − × · × · | = −(B + 2C), | · | = C,

2 × · △ = −2D and −22 = 0 (cf. Eq. (2.1 d)). It thus follows that D4,S ≡ Φ4,S = A is

the sum over all acyclic subgraphs of G meeting conditions (i)–(iv).

contain cycles. This enables us to express the minors in another way: Defining

Φ|S|,S =
∑

all acyclic subgraphs of G meeting (i) and (ii) (3.1)

we can write

D|S|,S = (−1)|S|Φ|S|,S . (3.2)

We remark that Kirchhoff’s Theorem [22], which has previously been used for the

analysis of dynamical systems [38, 27], appears as the special case of Eq. (3.2), in which

|S| = N − 1.

The simplification of the minors due to the zero-row-sum condition as well as the

relation between the D|S|,S and their topological equivalents Φ|S|,S can be illustrated by
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+ +

+ +
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=
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Φ

Φ

Φ

Φ

Φ

Figure 3. Topological equivalents of minors. Shown is the complete sequence of

Φ|S|,S , |S| = 1, . . . , 5 for the graph G from Fig. 2.

means of a simple example. Consider the symmetric zero-row-sum 6× 6 matrix

J=












(J11) J12 J13 0 0 0

J12 (J22) J23 0 0 0

J13 J23 (J33) J34 0 0

0 0 J34 (J44) J45 0

0 0 0 J45 (J55) J56
0 0 0 0 J56 (J66)












. (3.3)

Here, (Jii) abbreviates −
∑

j 6=i Jij . In Fig. 2, we calculate the minor D4,S={1,...,4} in

terms of the subgraphs of the corresponding graph G. The calculation illustrates the

reasoning that lead to the Eqs. (3.1) and (3.2).

The complete sequence of minors D|S|,S , |S| = 1, . . . , r can be calculated as

D1,S = (−1) (J12 + J13)

D2,S = (−1)2 (J12J13 + J12J23 + J13J23)

D3,S = (−1)3 (J12J13 + J12J23 + J13J23) J34

D4,S = (−1)4 (J12J13 + J12J23 + J13J23) J34J45

D5,S = (−1)5 (J12J13 + J12J23 + J13J23) J34J45J56

where S = {1, . . . , |S|}, and r = 5 due to the zero-row-sum condition.

On the other hand, we can use the definition (3.1) to construct the sequence Φ|S|,S ,

|S| = 1, . . . , r, directly from the graph G (cf. Fig. 3). A comparison of both, the algebraic

and the topological results, reproduces Eq. (3.2). Note that labeling the nodes in different

order would have yielded different algebraic as well as topological expressions.

4 Topological stability conditions

Let us shortly summarize what we obtained so far. The topological reading of determi-

nants maps a Hermitian Jacobian J with zero row sum onto a graph G, whose weight

matrix is given by the off-diagonal part of J. The minors of J can then be interpreted

as sums over values associated with subgraphs of G. Combining the Eqs. (1.2) and (3.2),

the algebraic stability constraints on the minors of J translate into

Φ|S|,S > 0, ∀S, |S| = 1, . . . , r. (4.1)
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We emphasize that the graph G is not an abstract construction, but combines informa-

tion about the physical interaction topology and the dynamical units. For example, if a

graph G has disconnected components, there is a reordering of the variables xi, such that

J is block diagonal. This implies that the spectra of different topological components of

G decouple and can thus be treated independently.

From Eq. (4.1) we can immediately read off a weak sufficient condition for stability:

Because Φ|S|,S is a sum over products of the Jij , a Jacobian with Jij > 0 ∀i, j is a

solution to Eq. (4.1) irrespective of the specific structure of G [46]. By contrast, if Jij < 0

for some i, j, then the existence of solutions of Eq. (4.1) is dependent on the topology.

The Φ-notation allows to investigate which combinations of negative Jij in a graph G

lead to the violation of at least one of the Eqs. (4.1): The definition of Φ implies that

any given Φ|S|,S can be represented as a function over a set of Φ|Si|,Si

Φ|S|,S = f
({

Φ|Si|,Si

})
, (4.2)

where the Si are subsets of S, and f depends on the choice of the Si.

Now the key point: For showing that a given topological arrangement of negative Jij
is incompatible with the stability conditions Eqs. (4.1), it suffices to show that it exist

some Φ|S|,S and some expansion (4.2) thereof, for which there is no solution with all

occurring Φ > 0. Note that this dispenses with the specific calculation of any Φ|S|,S , and

hence with addressing the up to |S|! terms they subsume.

To illustrate the application of the topological stability criteria we use this approach to

prove that stability requires that every component of G has a spanning tree, whose links

all have positive weights [13]. The proof uses the Φ-notation to show that at least one of

the necessary conditions must be violated when no spanning tree of positive connections

exists.

We start by assuming that no positive spanning tree exists. In this case it must be

possible to partition the nodes into two nonempty sets I1, I2 such that

Jij 6 0 ∀ i, j | i ∈ I1, j ∈ I2 . (4.3)

The idea is now to evaluate the stability conditions (4.1) for different S ⊆ I1 thereby

exploiting that all links leading out of I1 have negative weights. For this purpose, it is

convenient to define E∗ as the set of links connecting I1 and I2, and X = {x1, . . . , xm}

as the subset of nodes ∈ I1 incident to at least one link from E∗ (‘boundary vertices’).

Further, we define σi as the sum over all elements of E∗ incident to xi, and, for any

subset Y of X, σY :=
∏

m∈Y σm. Finally, for any subset Y of X, we define τY as the sum

over all forests of G that (i) span I1, and (ii) consists of |Y | trees each of which contains

exactly one element from Y .

With the above definitions we can write

ΦI1\C =
∑

B⊆X\C

σBτB∪C , (4.4)

where B and C are disjoint subsets of X and ΦI1\C := Φq,I1\C . The rather abstract

equation is illustrated in Fig. 4 by means of an example.

Equation (4.4) can be read as an expansion of ΦI1\C in contributions from E∗. This

expansion has the advantage that the sign of one of the two factors in each term is known:
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I IE1 2

*

X

+++Φ
I  \ x  , x1

=
2 3

+ +

node in  S

node not in  S

isolated node not in  S

Figure 4. Expanding ΦS . Upper panel: Consider a graph G without positive spanning

tree. The grey shaded areas represent the subgraphs of G induced by I1, I2 respectively.

The nodes in X shall be labeled x1, x2, x3 with x1 being the upmost and x3 being the

bottommost node. Lower panel: We now want to symbolically construct all terms that

contribute to ΦI1\{x2,x3}. To this end, we use a definition of ΦS , that is equivalent to the

one given in the main text: ΦS is the sum over all forests of G, in which each tree contains

exactly one vertex /∈ S. The panel displays the different realizations of such forests with

two trees (term 1–2), three trees respectively (term 3–8). Here, a grey shaded area divided

by n dashed lines symbolizes all possibilities to span I1\{x2, x3} with n trees such that no

two nodes in X, which are divided by a dashed line, are part of the same tree. Comparing

with the definition of τY and σY reveals that the sum over the first two symbolic terms

equals the B = ∅ term of Eq. (4.4), while the sum over all other symbolic terms equals

the B = {x1} term of Eq. (4.4).

sgn (σB) = (−1)|B|. The signs of the factors τB∪C , however, are still indeterminate.

Nevertheless, we can show that Eq. (4.4) is incompatible with the stability condition

(4.1) by considering a linear combination of ΦI1\C

∑

C⊆X

(−1)|C|σC
︸ ︷︷ ︸

>0 per
construction

ΦI1\C
︸ ︷︷ ︸

>0

=
∑

C⊆X

(−1)|C|σC

∑

B⊆X\C

σBτB∪C

=
∑

C⊆X
B⊆X\C

(−1)|C|σB∪CτB∪C

=
∑

A⊆X
C⊆A

(−1)|C|σAτA

=
∑

A⊆X

σAτA
∑

C⊆A

(−1)|C|

︸ ︷︷ ︸

=0

= 0 ,

which is a contradiction. Therefore the existence of a spanning tree of positive elements

is a necessary condition for stability, which completes the proof.

In addition to the spanning tree criterion for stability, which pertains to a global
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Let C be an unbranched segment of a cycle of G that consists
of d links ci, i ∈ {1, . . . , d}. Let further wi denote the weight of
ci, and cx denote the only link in C with negative weight wx.
Then stability requires that

|wx| <

∏
i∈I∗

wi

∑
all distinct products of (d− 2) factors wi, i ∈ I

∗
(C1) ,

where I∗ = {1, . . . , d} \ x.

Figure 5. Stability sets an upper bound on the absolute value of a negative link weight. The

bounding relation is derived in Appendix B.

property of G, Eq. (4.1) implies further restrictions, which pertain to mesoscale properties

of G. Thus, the weights of all links that are not part of any cycle of G have to be positive.

Moreover, at most one of the links that build an unbranched segment of a cycle of G may

have a negative weight. Finally, the weight of a ‘negative link’ in an unbranched segment

of a cycle of G is bounded below by a value that depends on the weights of the other

links in the segment (cf. Fig 5).

Note that while the mesoscale criteria restricting the number and position of negative

links can be subsumed under the global spanning tree criterion, the mesoscale criteria

restricting the weights of possible negative links are inherently bound to the mesoscale.

In particular, the latter can only be derived by considering Φ|S|,S with small and in-

termediate |S|. This highlights the benefits of the proposed approach: The JSC provide

stability criteria on all scales |S|, which are made accessible by means of the graphical

notation and symbolic calculus.

Applied to the Kuramoto model defined in Eq. (1.1), the spanning tree criterion for

stability allows to deduce properties shared by the configuration of all possible phase-

locked systems [13]. In a phase-locked state, Jij = Aij cos(xj − xi), where xj − xi is

the stationary phase difference between oscillator j and i. Given that all link weights

Aij > 0, stability of the phase-locked state thus requires that the coupling network has

a spanning tree of oscillators obeying |xj − xi| < π/2.

5 Other applications

The proposed approach is applicable to a wide range of questions from different fields. In

addition to stability analysis, the graphical notation introduced here allows for instance

exploring the isospectrality of Hermitian or symmetric matrices [16, 40], which differ with

respect to the signs of some off-diagonal entries. The key idea is that the characteristic

polynomial χ of a Hermitian matrix A ∈ C
n×n can be expressed as χ(λ) = Dn(A− λI).

Considering the structure of the graph G associated to A−λI allows to determine which

symbols contribute to χ. One can then determine which changes of sign of off-diagonal
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entries leave all contributing symbols and thus the characteristic polynomial and the

spectrum invariant (see Appendix C).

The derivation of stability criteria by graphical interpretation of the JSC is applicable

to all systems with Hermitian Jacobian matrix. Further, the simplification leading up to

the spanning tree criterion is possible, whenever the Jacobian has zero row sums. This

condition is satisfied for instance by all systems of the form

ẋi = Ci +
∑

j 6=i

Aij ·Oij(xj − xi) , ∀i ∈ 1 . . . N , (5.1)

where the Aij are the weights of a symmetric interaction network and the Oij odd

functions. We emphasize that the approach remains applicable in heterogeneous networks

containing different link strengths Aij , coupling functions Oij or intrinsic parameters Ci.

The class of systems to which the present results are directly applicable include general

networks of phase oscillators as well as other models such as continuous-time variants

of the Deffuant model of opinion formation [11] or a class of ecological metapopulation

models [26].

Although the specific criteria derived above are contingent on the zero-row sum con-

dition, it can be expected that the general approach proposed here is also applicable to

situations where this condition is violated, such as in the model of cooperation among

interacting agents studied in [12]. A simple extension of Eq. (5.1) which violates the zero

row sum condition is found by replacing Ci by a function of xi, which allows dynamical

retuning of the intrinsic frequency, e.g. for modeling homeostatic feedback in neural net-

works. For illustrating the application of the proposed method to models in which the

zero row sum condition is violated in some rows, we consider another model inspired by

neuroscience in the subsequent section.

6 Adaptive Kuramoto model

We now apply the proposed approach to an example of an adaptive network, i.e., a system

in which the topology of the network coevolves with the dynamics of oscillators [20, 45,

18]. In the context of the Kuramoto model, adaptive coupling has recently attracted

keen interest as it allowed to show that the emergence of synchronous motion can be

intimately related to a selection mechanism of specific network topologies [39], and to

the identification of complex hierarchical structures in the graph connectivity [45, 3].

We consider a system of N phase oscillators that evolve according to Eq. (1.1), while

the coupling strength Aij evolves according to

d

dt
Aij = cos(xj − xi)− b ·Aij . (6.1)

The first term in Eq. (6.1) states that the more similar the phases of two nodes the

stronger reinforced is their connection, the second term guarantees convergence. In a

stationary, phase-locked state state Aij = cos(xj −xi)/b and all oscillators oscillate with

a common frequency Ω = 1
N

∑

i ωi. The stability of this state is governed by a symmetric
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Jacobian

J =












−b 0 0 s21 s12 0

0 −b 0 s31 0 s13
0 0 −b 0 s32 s23
s21 s31 0 m1 o12 o13
s12 0 s32 o12 m2 o23
0 s13 s23 o13 o23 m3












, (6.2)

where oij := 1
b
cos2(xj − xi), mi := −

∑

j 6=i oij , sji := sin(xj − xi) and we have chosen

N = 3 for illustration. The marked partitioning separates two blocks on the diagonal.

The upper one is a diagonal submatrix of size L×L, L := N(N − 1)/2, the lower one is

a N ×N symmetric submatrix with zero row sum, which we denote as j.

Let us start our analysis by focusing on the upper left block of J. In the chosen

ordering of variables, the first L minors D|S| satisfy the stability condition Eq. (1.2) if

and only if b > 0. Concerning the minors of order |S| > L, the following conventions

prove advantageous: We define DL+n,S as the determinant of the submatrix of J, which

is spanned by all variables Aij and the n variables xsi . Further, D0+n,S denotes the

determinant of the submatrix of j, which is solely spanned by the n variables xsi .

We find that

DL+n,S = (−1)LbL−n · F (D0+n,S) , (6.3)

where F is the linear mapping F : oij → cos(2(xj−xi)). As the submatrix j is symmetric

and has a zero row sum, its minors, D0+n,S , can be rewritten using Eq. (3.2)

DL+n,S = (−1)L+nbL−nF (Φn,S) , (6.4)

where Φn,S refers to subgraphs of the graph G defined by the off-diagonal entries of j. Sta-

bility requires that sgn (DL+n,S) = sgn
(
(−1)L+n

)
. As the necessary stability condition

b > 0 implies bL−n > 0, it follows that in a stable system

F (Φn,S) > 0, ∀S, n = 1 . . . r. (6.5)

Comparison with Eq. 4.1 reveals that a necessary condition for stability is that the graph

F (G) has a positive spanning tree. Revisiting the definitions of the linear map F and the

graph G, we find that the weight of a links ij of F (G) is given by cos(2(xj − xi)). Hence,

F (G) has a positive spanning tree if and only if the adaptive coupling network has a

spanning tree of oscillators obeying |xj − xi| < π/4. The restriction on the stationary

phase-differences in a stable, phase-locked state are thus more strict in the adaptive than

in the non-adaptive case.

7 Conclusions

In the present paper we presented a general approach for the analysis of symmetrically

coupled systems and a specific simplifications for systems, in which the Jacobian matrix

J additionally has a zero row sum.

Using a graphical interpretation of Jacobi’s signature criterion we showed that for

all non-trivial eigenvalues of J to be negative, the graph G, whose adjacency matrix is

given by the off-diagonal part of J, has to obey necessary topological conditions. Thus, G
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must have a spanning tree of links with positive weights, which restricts the number and

position of potential negative entries in the Jacobian matrix. Moreover, the absolute value

of potential negative link weights is bounded above by a topology dependent relation.

We used the approach for deriving necessary conditions for local asymptotic stability

of stationary and phase-locked states in networks of phase oscillators. Our results provide

an analytical angle that is complementary to statistical analysis of network synchroniz-

ability. Where statistical approaches reveal global features impinging on the propensity

to synchronize, our approach can pinpoint specific defects precluding synchronization.

We note that such defects can occur on all scales, corresponding to the violation of the

signature criterion in subgraphs of different size. This highlights synchronization of phase

oscillators as a simple but intriguing example in which instabilities can arise from local,

global or mesoscale structures. In the future, the approach proposed here may provide a

basis for further investigation of these instabilities.

A limitation of the present approach is that the Jacobian matrix of the state under

consideration has to be available in some form. However, this limitation is inherent to all

forms of linear stability and bifurcation analysis and several strategies have been devel-

oped for mitigating it. These include for instance the equation-free approach [23], where

the desired information on the Jacobian is generated on-demand from simulations or

experiments, and generalized modeling [19], which reveals a parameterized presentation

of the Jacobian for very general classes of systems. Even if these specific techniques are

not applied, researchers are often aware of the structure of the Jacobian in the system

under consideration, which can be sufficient for gaining some fundamental insights by

the proposed approach.

It is apparent that applying the stability analysis proposed here may require over-

coming specific problems. In particular, the requirements of symmetry and zero-row sum

may necessitate extending the basic scheme or focusing on specific cases, as we did in the

adaptive network example. However, if these problems can be overcome, the approach

can reveal hard analytical conditions that all stable steady states must meet. Further, it

can identify topological structures (on all scales) that prevent the existence of such states

and pinpoint them in networks. Because this type of information is complementary to

insights revealed by common statistical approaches, it is potentially of high value for the

analysis of the system.

Appendix A Decomposition of minors in cyclic subgraphs

The Leibniz formula for determinants [2] implies that (i) a minor Dq,S is a sum over q!

elementary products Ji1j1 · . . . · Jiqjq ; and that (ii) in each of these products every index

si ∈ S occurs exactly twice.

In the topological reading this translates to the following statements: Because of prop-

erty (i), each term of a minor Dq,S corresponds to a subgraph with q links. Because of

property (ii), these subgraphs are composed of sets of cycles in G: Every index si ∈ S

occurs either with multiplicity two on a diagonal element of J, or, with multiplicity one,

on two off-diagonal elements of J. In the former case, the respective factor corresponds

to a self-loop of G, i.e., to a cycle of length n = 1; in the latter case, there is a set of

factors Jij i 6= j corresponding to a closed path of links, i.e., a cycle of length n > 1.
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Appendix B Lower bound on the negative link weights

Consider a path of d− 1 degree-two nodes vi, i ∈ {1, . . . , d− 1}, that are part of at least

one cycle of G. Together with the d egdes ci that are incident to at least one of the nodes

vi, the path constitutes an unbranched segment C of a cycle of G (cf. Fig. 3).

According to the spanning tree criterion, C can have at most one link with negative

weight. Below, we consider the case where C has exactly one such link, and show that

Eq. (4.1) imposes an upper bound on the absolute value of the negative link weight.

We use following conventions: Let the nodes be labeled such that the indices i occur in

an increasing order if C is paced out. And let the links be labeled such that vi is incident

to ci and ci+1 (cf. Fig. 2S). Further, let wi denote the weight of ci. And lastly, let cx
denote the only link in C with negative weight wx. Below, show that stability requires

that

|wx| <
∏

all wi, i ∈ I∗

∑
all distinct products of (d − 2) factors wi, i ∈ I∗ , (B 1)

where I∗ = {1, . . . , d} \ x.

For deriving Eq. (B 1), we consider a sequence of conditions ΦS1
. . .ΦSd−1

. The sequence

is constructed as follows: we choose S1 = x, S2 = {x, x+ 1}, S3 = {x, x+ 1, x+ 2}, and

so forth until Sd−x = {x, x+ 1, x+ 2, . . . , d− 1}. The remaining elements of the sequence

are then constructed as Sd−x+1 = Sd−x ∪ {x− 1}, Sd−x+2 = Sd−x ∪ {x− 1, x− 2}, and

so forth until Sd−1 = {vi}i∈{1,...,d−1}.

The first element of the sequence, ΦS1
> 0, stipulates that wx + wx+1 > 0, and thus

that −wx < wx+1.

The second element of the sequence ΦS2
> 0 stipulates that wxwx+1 + wxwx+2 +

wx+1wx+2 > 0 and thus that −wx < (wx+1wx+2)/(wx+1 + wx+2).

More generally, every element ΦSi
of the sequence ΦS1

, . . . ,ΦSd−1
modifies the upper

bound on −wx as per

−wx <
∏

all wi, i ∈ S∗

i∑
all distinct products of (|Si| − 1) factors wi, i ∈ S∗

i
, (B 2)

where S∗
i = (Si \ x) ∪ (max(Si) + 1).

The right hand side of Eq. (B 2) is monotonously decreasing with increasing |Si|. We

can thus conclude that C can have at most one link with negative weight, whose absolute

value |wx| is bounded above by Eq. (B 1).

Appendix C Applicability of the graphical notation to isospectrality

problems

The graphical notation provides a straight forward approach to explore the isospectrality

of Hermitian or symmetric matrices which differ with respect to the signs of some off-

diagonal entries. To see this consider a Hermitian matrix A ∈ C
n×n. Its characteristic

polynomial χ can be calculated as

χ(λ) = Dn(A− λI)

Considering the structure of the graph G associated to A−λI allows to determine which

symbols contribute to χ. One can then determine which changes of sign of off-diagonal
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entries leave all contributing symbols and thus the characteristic polynomial and the

spectrum invariant.

For instance, if the graph G is a tree, then the only symbols that contribute to the

characteristic polynomial χ are the symbols × and |. Thus, χ is a polynomial of factors

(Aii − λ) (corresponding to symbols ×), and factors AijAji (corresponding to symbols

|). Due to the hermiticity of A, AijAji = |Aij |
2. It follows that χ, and therewith the

spectrum, is invariant under any operation that changes the sign of a pair of off-diagonal

entries Aij → −Aij , Aji → −Aji.

Along the same line, we can infer isospectrality relations for matrices A, whose cor-

responding graphs G are composed only of tree-like subgraphs and isolated cycles. For

such matrices, the spectrum is invariant under symmetry preserving sign changes of

• an arbitrary number of off-diagonal entries that do not belong to cyclic subgraphs of

G.

• an even number of off-diagonal entries that belong to the same cyclic subgraph of G.
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