10 research outputs found

    Optimierung eins Atom-Atom-Quantennetzwerklinks mit maschinellem Lernen

    No full text

    The contribution of virtual production intelligence to laser cutting planning processes

    No full text
    In order to facilitate the improvement in product quality and production efficiency, many companies use simulation applications. In turn, they face the challenge of making these applications interoperable. Once the interoperability is established, the challenges of understanding and improving the processes arise. They can be overcome by modeling and analyzing the processes in question. This paper presents a use case scenario from laser cutting. A new concept is introduced addressing the challenges aforementioned. It conforms to the principles of the integration and examination of data and combines virtual production with the goal of gaining knowledge through the analysis of simulated processes

    Event-Ready Entanglement of Distant Atoms Distributed at Telecom Wavelength

    No full text

    Virtual production intelligence (VPI)

    No full text
    The research area Virtual Production Intelligence (VPI) focuses on the integrated support of collaborative planning processes for production systems and products. The focus of the research is on processes for information processing in the design domains Factory and Machine. These processes provide the integration and interactive analysis of emerging, mostly heterogeneous planning information. The demonstrators (flapAssist, memoSlice und VPI platform) that are information systems serve for the validation of the scientific approaches and aim to realize a continuous and consistent information management in terms of the Digital Factory. Central challenges are the semantic information integration (e.g., by means of metamodeling), the subsequent evaluation as well as the visualization of planning information (e.g., by means of Visual Analytics and Virtual Reality). All scientific and technical work is done within an interdisciplinary team composed of engineers, computer scientists and physicists

    Towards integrative computational materials engineering of steel components

    No full text
    This article outlines on-going activities at the RWTH Aachen University aiming at a standardized, modular, extendable and open simulation platform for materials processing. This platform on the one hand facilitates the information exchange between different simulation tools and thus strongly reduces the effort to design/re-design production processes. On the other hand, tracking of simulation results along the entire production chain provides new insights into mechanisms, which cannot be explained on the basis of individual simulations. Respective simulation chains provide e.g. the basis for the determination of materials and component properties, like e.g. distortions, for an improved product quality, for more efficient and more reliable production processes and many further aspects. After a short introduction to the platform concept, actual examples for different test case scenarios will be presented and discussed
    corecore