3 research outputs found

    ΠšΠ»Π°ΡΠΈΡ„Ρ–ΠΊΠ°Ρ†Ρ–Ρ ΠΌΡƒΠ»ΡŒΡ‚ΠΈΠΊΡƒΡ‚ΠΎΠ²ΠΎΡ— Ρ‚Π° ΡΠΏΠ΅ΠΊΡ‚Ρ€Π°Π»ΡŒΠ½ΠΎΡ— СліпсомСтрії для Π½Π°ΠΏΡ–Π²ΠΏΡ€ΠΎΠ²Ρ–Π΄Π½ΠΈΠΊΠΎΠ²ΠΈΡ… наноструктур

    No full text
    ДослідТСні моТливості Π±Π°Π³Π°Ρ‚ΠΎΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π½ΠΎΠ³ΠΎ визначСння Π½Π°ΠΏΡ–Π²ΠΏΡ€ΠΎΠ²Ρ–Π΄Π½ΠΈΠΊΠΎΠ²ΠΈΡ… наноструктур Π½Π° основі ΡΠΏΠ΅ΠΊΡ‚Ρ€Π°Π»ΡŒΠ½ΠΈΡ… залСТностСй поляризованого Π²ΠΈΠΏΡ€ΠΎΠΌΡ–Π½ΡŽΠ²Π°Π½Π½Ρ ΠΊΠΎΠ΅Ρ„Ρ–Ρ†Ρ–Ρ”Π½Ρ‚Π° відбиття Rp, Rs Π²Ρ–Π΄ ΠΊΡƒΡ‚Π° падіння Π² Π΄Ρ–Π°ΠΏΠ°Π·ΠΎΠ½Ρ– 200-800 Π½ΠΌ. Π•ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ– Π΄Π°Π½Ρ– ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ високі ΠΊΠΎΠ΅Ρ„Ρ–Ρ†Ρ–Ρ”Π½Ρ‚ΠΈ чутливості відбивання ΠΊΡƒΡ‚ΠΎΠ²ΠΎΡ— залСТності Π²Ρ–Π΄ Ρ‚ΠΈΠΏΡƒ полікристалічних структур. ΠΠ°ΡΠ²Π½Ρ–ΡΡ‚ΡŒ Π΄ΠΎΠ΄Π°Ρ‚ΠΊΠΎΠ²ΠΈΡ… ΡΠΏΠ΅ΠΊΡ‚Ρ€Π°Π»ΡŒΠ½ΠΈΡ… СкстрСмумів Π² залСТності Π²Ρ–Π΄ заломлСння Ρ– поглинання ΠΌΠΎΠΆΠ΅ Π±ΡƒΡ‚ΠΈ ΠΏΠΎΠ²'язанС Π· Ρ€ΠΎΠ·ΠΌΡ–Ρ€ΠΎΠΌ Π·Π΅Ρ€Π΅Π½ ΠΏΠΎ- лікристалічної структури Ρ– Ρ‚ΠΈΠΏΡƒ ΠΌΠ΅ΠΆ Π·Π΅Ρ€Π΅Π½. Показана ΠΌΠΎΠΆΠ»ΠΈΠ²Ρ–ΡΡ‚ΡŒ Π±Π°Π³Π°Ρ‚ΠΎΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π½ΠΎΠ³ΠΎ дослідТСння. ΠΎΠΏΡ‚ΠΈΡ‡Π½ΠΈΡ… властивостСй Ρ– Ρ‚ΠΎΠ²Ρ‰ΠΈΠ½ΠΈ Π½Π°ΠΏΡ–Π²ΠΏΡ€ΠΎΠ²Ρ–Π΄Π½ΠΈΠΊΠΎΠ²ΠΈΡ… ΡˆΠ°Ρ€Ρ–Π² Π½Π° ΠΊΡ€Π΅ΠΌΠ½Ρ–Ρ”Π²Ρ–ΠΉ ΠΏΡ–Π΄ΠΊΠ»Π°Π΄Ρ†Ρ–. ΠŸΡ€ΠΈ Ρ†ΠΈΡ‚ΡƒΠ²Π°Π½Π½Ρ– Π΄ΠΎΠΊΡƒΠΌΠ΅Π½Ρ‚Π°, використовуйтС посилання http://essuir.sumdu.edu.ua/handle/123456789/35955Π˜ΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Ρ‹ возмоТности многопарамСтричСского опрСдСлСния ΠΏΠΎΠ»ΡƒΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ²Ρ‹Ρ… нанострук- Ρ‚ΡƒΡ€ Π½Π° основС ΡΠΏΠ΅ΠΊΡ‚Ρ€Π°Π»ΡŒΠ½Ρ‹Ρ… зависимостСй поляризованного излучСния коэффициСнта отраТСния Rp, Rs ΠΎΡ‚ ΡƒΠ³Π»Π° падСния Π² Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ 200-800 Π½ΠΌ. Π­ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Π΅ Π΄Π°Π½Π½Ρ‹Π΅ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ высокиС коэффициСнты Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ отраТСния ΡƒΠ³Π»ΠΎΠ²ΠΎΠΉ зависимости ΠΎΡ‚ Ρ‚ΠΈΠΏΠ° поликристалличСских структур. НаличиС Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΡΠΏΠ΅ΠΊΡ‚Ρ€Π°Π»ΡŒΠ½Ρ‹Ρ… экстрСмумов Π² зависимости ΠΎΡ‚ прСломлСния ΠΈ поглощСния ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ связано с Ρ€Π°Π·ΠΌΠ΅Ρ€ΠΎΠΌ Π·Π΅Ρ€Π΅Π½ поликристалличСской структуры ΠΈ Ρ‚ΠΈΠΏΠ° Π³Ρ€Π°Π½ΠΈΡ† Π·Π΅Ρ€Π΅Π½. Показана Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ многопарамСтричСского исслСдования оптичСских свойств ΠΈ Ρ‚ΠΎΠ»Ρ‰ΠΈΠ½Ρ‹ ΠΏΠΎΠ»ΡƒΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ²Ρ‹Ρ… слоСв Π½Π° ΠΊΡ€Π΅ΠΌΠ½ΠΈΠ΅Π²ΠΎΠΉ ΠΏΠΎΠ΄Π»ΠΎΠΆΠΊΠ΅. ΠŸΡ€ΠΈ Ρ†ΠΈΡ‚ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ Π΄ΠΎΠΊΡƒΠΌΠ΅Π½Ρ‚Π°, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠΉΡ‚Π΅ ссылку http://essuir.sumdu.edu.ua/handle/123456789/35955The possibilities of multiparameter determination of semiconductor nanostructures based on spectral dependencies of polarized radiation reflection coefficient Rp, Rs on the incidence angle in the range of 200- 800 nm are investigated. Experimental data have shown high sensitivity of reflection coefficients angular dependence to the type of polycrystalline structures at the same film thickness. The presence of additional extremums in spectral dependence of refraction and absorption indexes is detected; this could be connected with grain size of polycrystalline structure and type of grain boundaries. The possibility of multiparameter optical research of properties and thickness of semiconductor layers on Si substrate is shown. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3595

    Higher mass-independent isotope fractionation of methylmercury in the pelagic food web of Lake Baikal (Russia)

    No full text
    cited By 36International audienceMercury undergoes several transformations that influence its stable isotope composition during a number of environmental and biological processes. Measurements of Hg isotopic mass-dependent (MDF) and mass-independent fractionation (MIF) in food webs may therefore help to identify major sources and processes leading to significant bioaccumulation of methylmercury (MeHg). In this work, Ξ΄13C, Ξ΄15N, concentration of Hg species (MeHg, inorganic Hg), and stable isotopic composition of Hg were determined at different trophic levels of the remote and pristine Lake Baikal ecosystem. Muscle of seals and different fish as well as amphipods, zooplankton, and phytoplankton were specifically investigated. MDF during trophic transfer of MeHg leading to enrichment of heavier isotopes in the predators was clearly established by Ξ΄202Hg measurements in the pelagic prey-predator system (carnivorous sculpins and top-predator seals). Despite the low concentrations of Hg in the ecosystem, the pelagic food web reveals very high MIF Ξ”199Hg (3.15-6.65‰) in comparison to coastal fish (0.26-1.65‰) and most previous studies in aquatic organisms. Trophic transfer does not influence MIF signature since similar Ξ”199Hg was observed in sculpins (4.59 Β± 0.55‰) and seal muscles (4.62 Β± 0.60‰). The MIF is suggested to be mainly controlled by specific physical and biogeochemical characteristics of the water column. The higher level of MIF in pelagic fish of Lake Baikal is mainly due to the bioaccumulation of residual MeHg that is efficiently turned over and photodemethylated in deep oligotrophic and stationary (i.e., long residence time) freshwater columns. Β© 2012 American Chemical Society

    Natural Hg isotopic composition of different Hg compounds in mammal tissues as a proxy for in vivo breakdown of toxic methylmercury

    No full text
    International audienceIn the last decade, specific attention has been paid to total mercury (HgT) stable isotopic composition, especially in natural samples such as aquatic organisms, due to its potential to track the cycle of this toxic element in the environment. Here, we investigated Hg Compound Specific stable Isotopic Composition (CSIC) of natural inorganic Hg (iHg) and methylmercury (MMHg) in various tissues of aquatic mammals (Beluga whale from the Arctic marine environment and seals from the freshwater lake Baikal, Russia). In seals' organs the variation in mass dependent fractionation (MDF, Ξ΄202Hg) for total Hg was significantly correlated to the respective fraction of iHg and MMHg compounds, with MMHg being enriched by ∼3‰ in heavier isotopes relative to iHg. On the other hand, we observe insignificant variation in Hg mass independent isotope fractionation (MIF, Ξ”199Hg) among iHg and MMHg in all organs for the same mammal species and MMHg in prey items. MIF signatures suggest that both MMHg and iHg in aquatic mammals have the same origin (i.e., MMHg from food), and are representative of Hg photochemistry in the water column of the mammal ecosystem. MDF signatures of Hg compounds indicate that MMHg is demethylated in vivo before being stored in the muscle, and the iHg formed is stored in the liver, and to a lesser extent in the kidney, before excretion. Thus, Hg CSIC analysis in mammals can be a powerful tool for tracing the metabolic response to Hg exposur
    corecore