750 research outputs found

    Efficient calculation of chiral three-nucleon forces up to N3LO for ab initio studies

    Full text link
    We present a novel framework to decompose three-nucleon forces in a momentum space partial-wave basis. The new approach is computationally much more efficient than previous methods and opens the way to ab initio studies of few-nucleon scattering processes, nuclei and nuclear matter based on higher-order chiral 3N forces. We use the new framework to calculate matrix elements of chiral three-nucleon forces at N2LO and N3LO in large basis spaces and carry out benchmark calculations for neutron matter and symmetric nuclear matter. We also study the size of the individual three-nucleon force contributions for 3^3H. For nonlocal regulators, we find that the sub-leading terms, which have been neglected in most calculations so far, provide important contributions. All matrix elements are calculated and stored in a user-friendly way, such that values of low-energy constants as well as the form of regulator functions can be chosen freely.Comment: 10 pages, 4 figure

    Deuteron electromagnetic form factors in a renormalizable formulation of chiral effective field theory

    Get PDF
    We calculate the deuteron electromagnetic form factors in a modified version of Weinberg's chiral effective field theory approach to the two-nucleon system. We derive renormalizable integral equations for the deuteron without partial wave decomposition. Deuteron form factors are extracted by applying the Lehmann-Symanzik-Zimmermann reduction formalism to the three-point correlation function of deuteron interpolating fields and the electromagnetic current operator. Numerical results of a leading-order calculation with removed cutoff regularization agree well with experimental data.Comment: 9 pages, 2 figure

    The magnetic form factor of the deuteron in chiral effective field theory

    Full text link
    We calculate the magnetic form factor of the deuteron up to O(eP^4) in the chiral EFT expansion of the electromagnetic current operator. The two LECs which enter the two-body part of the isoscalar NN three-current operator are fit to experimental data, and the resulting values are of natural size. The O(eP^4) description of G_M agrees with data for momentum transfers Q^2 < 0.35 GeV^2.Comment: 4 pages, 2 figure

    Nucleon-deuteron capture with chiral potentials

    Get PDF
    Present day chiral nucleon-nucleon potentials up to N3LO and three nucleon forces at N2LO are used to analyze nucleon-deuteron radiative capture at deuteron lab energies below E_d= 100 MeV. The differential cross section and the deuteron analyzing powers A_y(d) and A_{yy} are presented and compared to data. The theoretical predictions are obtained in the momentum-space Faddeev approach using the nuclear electromagnetic current operator with exchange currents introduced via the Siegert theorem. The chiral forces provide the same quality of data description as a combination of the two-nucleon AV18 and the three-nucleon Urbana IX interactions. However, the different parametrizations of the chiral potentials lead to broad bands of predictions.Comment: 20 pages, 12 ps figure

    Effective short-range interaction for spin-singlet P-wave nucleon-nucleon scattering

    Full text link
    Distorted-wave methods are used to remove the effects of one- and two-pion exchange up to order Q^3 from the empirical 1P1 phase shift. The one divergence that arises can be renormalised using an order-Q^2 counterterm which is provided by the (Weinberg) power counting appropriate to the effective field theory for this channel. The residual interaction is used to estimate the scale of the underlying physics.Comment: 4 pages, 3 figures (pdf

    Evidence of the Coulomb force effects in the cross sections of the deuteron-proton breakup at 130 MeV

    Get PDF
    High precision cross-section data of the deuteron-proton breakup reaction at 130 MeV deuteron energy are compared with the theoretical predictions obtained with a coupled-channel extension of the CD Bonn potential with virtual Delta-isobar excitation, without and with inclusion of the long-range Coulomb force. The Coulomb effect is studied on the basis of the cross-section data set, extended in this work to about 1500 data points by including breakup geometries characterized by small polar angles of the two protons. The experimental data clearly prefer predictions obtained with the Coulomb interaction included. The strongest effects are observed in regions in which the relative energy of the two protons is the smallest.Comment: 9 pages, 3 figures, submitted to Physics Letters

    Explicit Delta(1232) Degrees of Freedom in Compton Scattering off the Deuteron

    Full text link
    We examine elastic Compton scattering off the deuteron for photon energies between 50 MeV and 100 MeV in the framework of chiral effective field theories to next-to-leading order. We compare one theoretical scheme with only pions and nucleons as explicit degrees of freedom to another in which the Delta(1232) resonance is treated as an explicit degree of freedom. Whereas pion degrees of freedom suffice to describe the experimental data measured at about 70 MeV, the explicit Delta(1232) gives important contributions that help to reproduce the angular dependence at higher energies. The static isoscalar dipole polarizabilities alpha_E^s and beta_M^s are fitted to the available data, giving results for the neutron polarizabilities alpha_E^n=(14.2+-2.0(stat)+-1.9(syst))*10^(-4)fm^3, beta_M^n=(1.8+-2.2(stat)+-0.3(syst))*10^(-4)fm^3. These values are in good agreement with previous experimental analyses. Comparing them to the well-known proton values we conclude that there is currently no evidence for significant differences between the proton and neutron electromagnetic dipole polarizabilities.Comment: 24 pages, 11 figure

    Accurate Charge-Dependent Nucleon-Nucleon Potential at Fourth Order of Chiral Perturbation Theory

    Full text link
    We present the first nucleon-nucleon potential at next-to-next-to-next-to-leading order (fourth order) of chiral perturbation theory. Charge-dependence is included up to next-to-leading order of the isospin-violation scheme. The accuracy for the reproduction of the NN data below 290 MeV lab. energy is comparable to the one of phenomenological high-precision potentials. Since NN potentials of order three and less are known to be deficient in quantitative terms, the present work shows that the fourth order is necessary and sufficient for a reliable NN potential derived from chiral effective Lagrangians. The new potential provides a promising starting point for exact few-body calculations and microscopic nuclear structure theory (including chiral many-body forces derived on the same footing).Comment: 4 pages Revtex including one figur
    corecore