1,229 research outputs found

    Entanglement witnesses arising from Choi type positive linear maps

    Full text link
    We construct optimal PPTES witnesses to detect 333\otimes 3 PPT entangled edge states of type (6,8)(6,8) constructed recently \cite{kye_osaka}. To do this, we consider positive linear maps which are variants of the Choi type map involving complex numbers, and examine several notions related to optimality for those entanglement witnesses. Through the discussion, we suggest a method to check the optimality of entanglement witnesses without the spanning property.Comment: 18 pages, 4 figures, 1 tabl

    Quantitative measurements of the thermopower of Andreev interferometers

    Full text link
    Using a new second derivative technique and thermometers which enable us to determine the local electron temperature in a mesoscopic metallic sample, we have obtained quantitative measurements of the low temperature field and temperature dependent thermopower of Andreev interferometers. As in previous experiments, the thermopower is found to oscillate as a function of magnetic field. The temperature dependence of the thermopower is nonmonotonic, with a minimum at a temperature of 0.5\simeq0.5 K. These results are discussed from the perspective of Andreev reflection at the normal-metal/superconductor interface.Comment: 6 pages, 4 figure

    Oxide two-dimensional electron gas with high mobility at room-temperature

    Get PDF
    The prospect of 2‐dimensional electron gases (2DEGs) possessing high mobility at room temperature in wide‐bandgap perovskite stannates is enticing for oxide electronics, particularly to realize transparent and high‐electron mobility transistors. Nonetheless only a small number of studies to date report 2DEGs in BaSnO(3)‐based heterostructures. Here, 2DEG formation at the LaScO(3)/BaSnO(3) (LSO/BSO) interface with a room‐temperature mobility of 60 cm(2) V(−1) s(−1) at a carrier concentration of 1.7 × 10(13) cm(–2) is reported. This is an order of magnitude higher mobility at room temperature than achieved in SrTiO(3)‐based 2DEGs. This is achieved by combining a thick BSO buffer layer with an ex situ high‐temperature treatment, which not only reduces the dislocation density but also produces a SnO(2)‐terminated atomically flat surface, followed by the growth of an overlying BSO/LSO interface. Using weak beam dark‐field transmission electron microscopy imaging and in‐line electron holography technique, a reduction of the threading dislocation density is revealed, and direct evidence for the spatial confinement of a 2DEG at the BSO/LSO interface is provided. This work opens a new pathway to explore the exciting physics of stannate‐based 2DEGs at application‐relevant temperatures for oxide nanoelectronics

    Автоматизация создания перехватчиков событий в системе управления проектами Team Foundation Server с помощью Rest API для Visual Studio Team Services и Team Foundation Server

    Get PDF
    В данной статье рассмотрен метод автоматизации процесса создания перехватчиков событий для проектов в системе управления проектами Team Foundation Server с помощью REST API для Visual Studio Team Services и Team Foundation Server. В качестве примера рассмотрено создание перехватчика событий для проектов, работающий с системами контроля версий TFVC. This article describes the method of automation of the service hook setting process for projects in the Project Management System Team Foundation Server using the REST API for Visual Studio Team Services and Team Foundation Server. By way of example, the creation of the service hook for projects operating with TFVC version control systems is considered

    Titanium Nitride Films for Ultrasensitive Microresonator Detectors

    Full text link
    Titanium nitride (TiNx) films are ideal for use in superconducting microresonator detectors because: a) the critical temperature varies with composition (0 < Tc < 5 K); b) the normal-state resistivity is large, \rho_n ~ 100 μ\muOhm cm, facilitating efficient photon absorption and providing a large kinetic inductance and detector responsivity; and c) TiN films are very hard and mechanically robust. Resonators using reactively sputtered TiN films show remarkably low loss (Q_i > 10^7) and have noise properties similar to resonators made using other materials, while the quasiparticle lifetimes are reasonably long, 10-200 μ\mus. TiN microresonators should therefore reach sensitivities well below 10^-19 WHz^(-1/2).Comment: to be published in AP

    Polarity control of carrier injection at ferroelectric/metal interfaces for electrically switchable diode and photovoltaic effects

    Full text link
    We investigated a switchable ferroelectric diode effect and its physical mechanism in Pt/BiFeO3/SrRuO3 thin-film capacitors. Our results of electrical measurements support that, near the Pt/BiFeO3 interface of as-grown samples, a defective layer (possibly, an oxygen-vacancy-rich layer) becomes formed and disturbs carrier injection. We therefore used an electrical training process to obtain ferroelectric control of the diode polarity where, by changing the polarization direction using an external bias, we could switch the transport characteristics between forward and reverse diodes. Our system is characterized with a rectangular polarization hysteresis loop, with which we confirmed that the diode polarity switching occurred at the ferroelectric coercive voltage. Moreover, we observed a simultaneous switching of the diode polarity and the associated photovoltaic response dependent on the ferroelectric domain configurations. Our detailed study suggests that the polarization charge can affect the Schottky barrier at the ferroelectric/metal interfaces, resulting in a modulation of the interfacial carrier injection. The amount of polarization-modulated carrier injection can affect the transition voltage value at which a space-charge-limited bulk current-voltage (J-V) behavior is changed from Ohmic (i.e., J ~ V) to nonlinear (i.e., J ~ V^n with n \geq 2). This combination of bulk conduction and polarization-modulated carrier injection explains the detailed physical mechanism underlying the switchable diode effect in ferroelectric capacitors.Comment: Accepted for publication in Phys. Rev.

    Influence of growth temperature on the vortex pinning properties of pulsed laser deposited YBa(2)Cu(3)O(7-x) thin films

    Get PDF
    Epitaxial high-temperature superconducting YBa(2)Cu(3)O(7-x) thin films grown on 2 degrees miscut (001) (LaAlO(3))(0.3)-(SrAl(0.5)Ta(0.5)O(3))(0.7) substrates by pulsed laser deposition show significant and systematic changes in flux pinning properties on changing the substrate temperature from 730 to 820 degrees C. The bulk pinning force is highest for the 760 degrees C growth, rising to a maximum of 4.4 GN/m(3) at 77 K, though there are indications that vortex pinning strength is even higher for the 730 degrees C growth once allowance for the current-blocking effects of a-axis oriented grains is made. Cross-sectional transmission electron microscope images show that the density of antiphase boundaries, stacking faults, and edge dislocations increases strongly with decreasing growth temperature, and is highest at 730 degrees C. In spite of the enhanced density of the pinning defects mentioned above, their vortex pinning effect is still much smaller than for insulating nanoparticles of high density and optimum size, where pinning forces can be four to five times higher.open121

    A millimeter-wave kinetic inductance detector camera for long-range imaging through optical obscurants

    Get PDF
    Millimeter-wave imaging provides a promising option for long-range target detection through optical obscurants such as fog, which often occur in marine environments. Given this motivation, we are currently developing a 150 GHz polarization-sensitive imager using a relatively new type of superconducting pair-breaking detector, the kinetic inductance detector (KID). This imager will be paired with a 1.5 m telescope to obtain an angular resolution of 0.09° over a 3.5° field of view using 3,840 KIDs. We have fully characterized a prototype KID array, which shows excellent performance with noise strongly limited by the irreducible fluctuations from the ambient temperature background. Full-scale KID arrays are now being fabricated and characterized for a planned demonstration in a maritime environment later this year

    Non-Fermi liquid behavior and scaling of low frequency suppression in optical conductivity spectra of CaRuO3_3

    Full text link
    Optical conductivity spectra σ1(ω)\sigma_1(\omega) of paramagnetic CaRuO3_3 are investigated at various temperatures. At T=10 K, it shows a non-Fermi liquid behavior of σ1(ω)1/ω12\sigma_1(\omega)\sim 1/{\omega}^{\frac 12}, similar to the case of a ferromagnet SrRuO3_3. As the temperature (TT) is increased, on the other hand, σ1(ω)\sigma_1(\omega) in the low frequency region is progressively suppressed, deviating from the 1/{\omega}^{\frac 12%}-dependence. Interestingly, the suppression of σ1(ω)\sigma_1(\omega) is found to scale with ω/T\omega /T at all temperatures. The origin of the % \omega /T scaling behavior coupled with the non-Fermi liquid behavior is discussed.Comment: 4 pages, 3 figure
    corecore