1,707 research outputs found
Theoretical studies of the kinetics of mechanical unfolding of cross-linked polymer chains and their implications for single molecule pulling experiments
We have used kinetic Monte Carlo simulations to study the kinetics of
unfolding of cross-linked polymer chains under mechanical loading. As the ends
of a chain are pulled apart, the force transmitted by each crosslink increases
until it ruptures. The stochastic crosslink rupture process is assumed to be
governed by first order kinetics with a rate that depends exponentially on the
transmitted force. We have performed random searches to identify optimal
crosslink configurations whose unfolding requires a large applied force
(measure of strength) and/or large dissipated energy (measure of toughness). We
found that such optimal chains always involve cross-links arranged to form
parallel strands. The location of those optimal strands generally depends on
the loading rate. Optimal chains with a small number of cross-links were found
to be almost as strong and tough as optimal chains with a large number of
cross-links. Furthermore, optimality of chains with a small number of
cross-links can be easily destroyed by adding cross-links at random. The
present findings are relevant for the interpretation of single molecule force
probe spectroscopy studies of the mechanical unfolding of load-bearing
proteins, whose native topology often involves parallel strand arrangements
similar to the optimal configurations identified in the study
Quantum Hall Ferromagnetism in a Two-Dimensional Electron System
Experiments on a nearly spin degenerate two-dimensional electron system
reveals unusual hysteretic and relaxational transport in the fractional quantum
Hall effect regime. The transition between the spin-polarized (with fill
fraction ) and spin-unpolarized () states is accompanied
by a complicated series of hysteresis loops reminiscent of a classical
ferromagnet. In correlation with the hysteresis, magnetoresistance can either
grow or decay logarithmically in time with remarkable persistence and does not
saturate. In contrast to the established models of relaxation, the relaxation
rate exhibits an anomalous divergence as temperature is reduced. These results
indicate the presence of novel two-dimensional ferromagnetism with a
complicated magnetic domain dynamic.Comment: 15 pages, 5 figure
Electron-hole asymmetry in Co- and Mn-doped SrFe2As2
Phase diagram of electron and hole-doped SrFe2As2 single crystals is
investigated using Co and Mn substitution at the Fe-sites. We found that the
spin-density-wave state is suppressed by both dopants, but the superconducting
phase appears only for Co (electron)-doping, not for Mn (hole)-doping. Absence
of the superconductivity by Mn-doping is in sharp contrast to the hole-doped
system with K-substitution at the Sr sites. Distinct structural change, in
particular the increase of the Fe-As distance by Mn-doping is important to have
a magnetic and semiconducting ground state as confirmed by first principles
calculations. The absence of electron-hole symmetry in the Fe-site-doped
SrFe2As2 suggests that the occurrence of high-Tc superconductivity is sensitive
to the structural modification rather than the charge doping.Comment: 7 pages, 6 figure
Twitter-based analysis of the dynamics of collective attention to political parties
Large-scale data from social media have a significant potential to describe
complex phenomena in real world and to anticipate collective behaviors such as
information spreading and social trends. One specific case of study is
represented by the collective attention to the action of political parties. Not
surprisingly, researchers and stakeholders tried to correlate parties' presence
on social media with their performances in elections. Despite the many efforts,
results are still inconclusive since this kind of data is often very noisy and
significant signals could be covered by (largely unknown) statistical
fluctuations. In this paper we consider the number of tweets (tweet volume) of
a party as a proxy of collective attention to the party, identify the dynamics
of the volume, and show that this quantity has some information on the
elections outcome. We find that the distribution of the tweet volume for each
party follows a log-normal distribution with a positive autocorrelation of the
volume over short terms, which indicates the volume has large fluctuations of
the log-normal distribution yet with a short-term tendency. Furthermore, by
measuring the ratio of two consecutive daily tweet volumes, we find that the
evolution of the daily volume of a party can be described by means of a
geometric Brownian motion (i.e., the logarithm of the volume moves randomly
with a trend). Finally, we determine the optimal period of averaging tweet
volume for reducing fluctuations and extracting short-term tendencies. We
conclude that the tweet volume is a good indicator of parties' success in the
elections when considered over an optimal time window. Our study identifies the
statistical nature of collective attention to political issues and sheds light
on how to model the dynamics of collective attention in social media.Comment: 16 pages, 7 figures, 3 tables. Published in PLoS ON
Oxide two-dimensional electron gas with high mobility at room-temperature
The prospect of 2‐dimensional electron gases (2DEGs) possessing high mobility at room temperature in wide‐bandgap perovskite stannates is enticing for oxide electronics, particularly to realize transparent and high‐electron mobility transistors. Nonetheless only a small number of studies to date report 2DEGs in BaSnO(3)‐based heterostructures. Here, 2DEG formation at the LaScO(3)/BaSnO(3) (LSO/BSO) interface with a room‐temperature mobility of 60 cm(2) V(−1) s(−1) at a carrier concentration of 1.7 × 10(13) cm(–2) is reported. This is an order of magnitude higher mobility at room temperature than achieved in SrTiO(3)‐based 2DEGs. This is achieved by combining a thick BSO buffer layer with an ex situ high‐temperature treatment, which not only reduces the dislocation density but also produces a SnO(2)‐terminated atomically flat surface, followed by the growth of an overlying BSO/LSO interface. Using weak beam dark‐field transmission electron microscopy imaging and in‐line electron holography technique, a reduction of the threading dislocation density is revealed, and direct evidence for the spatial confinement of a 2DEG at the BSO/LSO interface is provided. This work opens a new pathway to explore the exciting physics of stannate‐based 2DEGs at application‐relevant temperatures for oxide nanoelectronics
Twitter-based analysis of the dynamics of collective attention to political parties
Large-scale data from social media have a significant potential to describe complex phenomena in the real world and to anticipate collective behaviors such as information spreading and social trends. One specific case of study is represented by the collective attention to the action of political parties. Not surprisingly, researchers and stakeholders tried to correlate parties' presence on social media with their performances in elections. Despite the many efforts, results are still inconclusive since this kind of data is often very noisy and significant signals could be covered by (largely unknown) statistical fluctuations. In this paper we consider the number of tweets (tweet volume) of a party as a proxy of collective attention to the party, identify the dynamics of the volume, and show that this quantity has some information on the election outcome. We find that the distribution of the tweet volume for each party follows a log-normal distribution with a positive autocorrelation of the volume over short terms, which indicates the volume has large fluctuations of the log-normal distribution yet with a short-term tendency. Furthermore, by measuring the ratio of two consecutive daily tweet volumes, we find that the evolution of the daily volume of a party can be described by means of a geometric Brownian motion (i.e., the logarithm of the volume moves randomly with a trend). Finally, we determine the optimal period of averaging tweet volume for reducing fluctuations and extracting short-term tendencies. We conclude that the tweet volume is a good indicator of parties' success in the elections when considered over an optimal time window. Our study identifies the statistical nature of collective attention to political issues and sheds light on how to model the dynamics of collective attention in social media
Local thermometry technique based on proximity-coupled superconductor/normal-metal/superconductor devices
In mesoscopic superconductor/normal-metal/superconductor (SNS)
heterostructures, it is known that the resistance of the normal metal between
the superconductors has a strong temperature dependence. Based on this
phenomenon, we have developed a new type of thermometer, which dramatically
enhances our ability to measure the local electron temperature Te at low
temperatures. Using this technique, we have been able to measure small
temperature gradients across a micron-size sample, opening up the possibility
of quantitatively measuring the thermal properties of mesoscopic devices.Comment: 4 pages, 4 figure
Anisotropic Dirac fermions in a Bi square net of SrMnBi2
We report the highly anisotropic Dirac fermions in a Bi square net of
SrMnBi2, based on a first principle calculation, angle resolved photoemission
spectroscopy, and quantum oscillations for high-quality single crystals. We
found that the Dirac dispersion is generally induced in the (SrBi)+ layer
containing a double-sized Bi square net. In contrast to the commonly observed
isotropic Dirac cone, the Dirac cone in SrMnBi2 is highly anisotropic with a
large momentum-dependent disparity of Fermi velocities of ~ 8. These findings
demonstrate that a Bi square net, a common building block of various layered
pnictides, provide a new platform that hosts highly anisotropic Dirac fermions.Comment: 5 pages, 4 figure
- …