13 research outputs found

    Do salivary bypass tubes lower the incidence of pharyngocutaneous fistula following total laryngectomy? A retrospective analysis of predictive factors using multivariate analysis

    Get PDF
    Salivary bypass tubes (SBT) are increasingly used to prevent pharyngocutaneous fistula (PCF) following laryngectomy and pharyngolaryngectomy. There is minimal evidence as to their efficacy and literature is limited. The aim of the study was to determine if SBT prevent PCF. The study was a multicentre retrospective case control series (level of evidence 3b). Patients who underwent laryngectomy or pharyngolaryngectomy for cancer or following cancer treatment between 2011 and 2014 were included in the study. The primary outcome was development of a PCF. Other variables recorded were age, sex, prior radiotherapy or chemoradiotherapy, prior tracheostomy, type of procedure, concurrent neck dissection, use of flap reconstruction, use of prophylactic antibiotics, the suture material used for the anastomosis, tumour T stage, histological margins, day one post-operative haemoglobin and whether a salivary bypass tube was used. Univariate and multivariate analysis were performed. A total of 199 patients were included and 24 received salivary bypass tubes. Fistula rates were 8.3% in the SBT group (2/24) and 24.6% in the control group (43/175). This was not statistically significant on univariate (p value 0.115) or multivariate analysis (p value 0.076). In addition, no other co-variables were found to be significant. No group has proven a benefit of salivary bypass tubes on multivariate analysis. The study was limited by a small case group, variations in tube duration and subjects given a tube may have been identified as high risk of fistula. Further prospective studies are warranted prior to recommendation of salivary bypass tubes following laryngectomy

    The potential of optical proteomic technologies to individualize prognosis and guide rational treatment for cancer patients

    Get PDF
    Genomics and proteomics will improve outcome prediction in cancer and have great potential to help in the discovery of unknown mechanisms of metastasis, ripe for therapeutic exploitation. Current methods of prognosis estimation rely on clinical data, anatomical staging and histopathological features. It is hoped that translational genomic and proteomic research will discriminate more accurately than is possible at present between patients with a good prognosis and those who carry a high risk of recurrence. Rational treatments, targeted to the specific molecular pathways of an individual’s high-risk tumor, are at the core of tailored therapy. The aim of targeted oncology is to select the right patient for the right drug at precisely the right point in their cancer journey. Optical proteomics uses advanced optical imaging technologies to quantify the activity states of and associations between signaling proteins by measuring energy transfer between fluorophores attached to specific proteins. FΓΆrster resonance energy transfer (FRET) and fluorescence lifetime imaging microscopy (FLIM) assays are suitable for use in cell line models of cancer, fresh human tissues and formalin-fixed paraffin-embedded tissue (FFPE). In animal models, dynamic deep tissue FLIM/FRET imaging of cancer cells in vivo is now also feasible. Analysis of protein expression and post-translational modifications such as phosphorylation and ubiquitination can be performed in cell lines and are remarkably efficiently in cancer tissue samples using tissue microarrays (TMAs). FRET assays can be performed to quantify protein-protein interactions within FFPE tissue, far beyond the spatial resolution conventionally associated with light or confocal laser microscopy. Multivariate optical parameters can be correlated with disease relapse for individual patients. FRET-FLIM assays allow rapid screening of target modifiers using high content drug screens. Specific protein-protein interactions conferring a poor prognosis identified by high content tissue screening will be perturbed with targeted therapeutics. Future targeted drugs will be identified using high content/throughput drug screens that are based on multivariate proteomic assays. Response to therapy at a molecular level can be monitored using these assays while the patient receives treatment: utilizing re-biopsy tumor tissue samples in the neoadjuvant setting or by examining surrogate tissues. These technologies will prove to be both prognostic of risk for individuals when applied to tumor tissue at first diagnosis and predictive of response to specifically selected targeted anticancer drugs. Advanced optical assays have great potential to be translated into real-life benefit for cancer patients

    Renal cell carcinoma metastasis to the parathyroid gland:A very rare occurrence

    Get PDF
    AbstractINTRODUCTIONMetastases to the parathyroid gland are very uncommon. Although renal cell carcinoma metastasis to the head and neck region is well recognised, with a predilection for unpredictable metastasis to unusual sites such as the thyroid gland, nose, paranasal sinuses, and cranial bones, there are no reports of parathyroid gland involvement.PRESENTATION OF CASEWe describe an unusual case of renal cell carcinoma metastasis to a parathyroid gland in a 69-year-old male who had been treated 8 years previously for a pT3b N0 M1 clear cell carcinoma of the right kidney with a right nephrectomy, and interferon immunotherapy for 18 months. The patient had originally presented to the plastic surgeons with a rapidly enlarging 3cm superficial lesion on the ventral aspect of the left forearm, which was excised with histology revealing metastatic renal (clear) cell carcinoma.DISCUSSIONRenal cell carcinoma has a reputation for unpredictable patterns of metastasis, and our case highlights this, with the first description in the literature of parathyroid gland metastasis. Despite the poor prognosis associated with metastatic renal cell carcinoma, our patient is still alive 10 years following original presentation, despite having metastasis to two different extra-renal sites and a shortened course of initial adjuvant systemic therapy.CONCLUSIONIn parathyroid gland metastasis, metastectomy can offer excellent local long term local control

    Integrating Receptor Signal Inputs That Influence Small Rho GTPase Activation Dynamics at the Immunological Synapseβ–Ώ †

    No full text
    The Rho GTPase Cdc42 regulates cytoskeletal changes at the immunological synapse (IS) that are critical to T-cell activation. By imaging fluorescent activity biosensors (Raichu) using fluorescence lifetime imaging microscopy, Cdc42 activation was shown to display kinetics that are conditional on the specific receptor input (through two IS-associated receptors, CD3 and Ξ²1 integrin). CD3-triggered Cdc42 activity is dependent on the cyto-2 (NPIY) motif of the Ξ²1 integrin cytoplasmic domain. Perturbations of the ezrin-radixin-moesin (ERM) function blocked CD3- and Ξ²1-dependent increases in Cdc42 activity. Both IS-associated receptors probably lie on a serial molecular pathway and transduce signals through the ERM-dependent machinery that is responsible for the remodeling and stabilization of the synapse. Cdc42 activity is impaired in Ξ²1 integrin-deficient T cells that form conjugates with antigen-presenting cells but is partially restored in the context of an antigen-specific synapse. This restoration of Cdc42 activity is due, at least in part, to the recruitment and activation of Ξ²2 integrin

    Summary of small molecule inhibitor screening data of CXCR4.

    No full text
    <p>(A) Layout of microplate. Wells marked in green are CXCR4 inhibitors. Controls are shown in white: column 10 shows data for CXCR4-eGFP and CXCR4-TagRFP transfected cells without inhibitor treatment; column 11 shows CXCR4-eGFP only cells without inhibitor treatment. In column 10 the concentration of CXCL12 is varied: row D is untreated while rows E and F are treated with 5 nM and 20 nM CXCL12 respectively. (B) Comparison of anisotropy and lifetime data showing that dimerisation and internalisation is blocked by CXCR4 inhibitors. Errors bars represent the standard deviation of repeated measurements in each well (4 images per well for each modality). (C) Plots of anisotropy and FRET efficiency for column 10, rows D, E and F: cells in the absence of any inhibitors (CXCL12 concentrations of 5 nM and 20 nM). (D) Percentage change in anisotropy and lifetime compared to controls.</p

    Demonstration of sensitivity and repeatability of fluorescence anisotropy and fluorescence lifetime imaging.

    No full text
    <p>(A) Anisotropy measurements of rhodamine B dissolved in varying concentrations of water and glycerol. The concentration of glycerol is used as a way of tuning the rotational diffusion, and therefore anisotropy, of the fluorophore. Any increasing percentage of glycerol reduces the mobility of the fluorophore molecules thereby increasing the fluorescence anisotropy. Differences of the order of 0.004 are easily and repeatedly measured. (B) Fluorescence lifetime measurements of the same rhodamine B sample. The concentration of glycerol has no effect on the lifetime. It is clear that the measurement is highly repeatable.</p

    Imaging of FRET standard constructs expressed in 293T cells.

    No full text
    <p>(A) Intensity images from the wide-field and laser scanning modalities. (B) Functional images for GFP, 32AA and 7AA standards. This amply demonstrates the correlation between the two measurement techniques and the sensitivity in determining changes in FRET efficiency. (Scale bars represent 50 Β΅m.)</p
    corecore