26 research outputs found

    Assessment of three DNA extraction kits for the absolute quantification of strongyle nematode eggs in faecal samples

    Get PDF
    Background Haemonchus contortus is one of the most pathogenic gastrointestinal nematodes of small ruminants. The current diagnostic approach for the detection of this species relies on coproscopic methods, which both have low sensitivity and are time consuming. Methods employing detection through DNA amplification, such as droplet digital polymerase chain reaction (ddPCR), offer an advantageous approach to the diagnosis of H. contortus. However, DNA extraction protocols need to be constantly updated for the optimal retrieval of diagnostically usable template. Here, we describe the evaluation of three genomic DNA extraction kits for the detection and quantification of H. contortus ITS2 amplicon DNA from faecal samples, using droplet digital PCR. Results DNA samples, extracted from faecal material with the Nucleospin DNA Stool kit, produced the highest amounts of ITS2 amplicon copies and had the lowest coefficient of variation across different dilutions and sample types (fresh or frozen) out of the tested kits (Nucleospin DNA Stool, E.Z.N.A.(R) Stool DNA Kit and QIAamp Fast DNA Stool Mini Kit). Furthermore, the protocol of this kit has the fewest number of steps and the price of DNA extraction per sample is reasonable (2.77 euro). Conclusions The Nucleospin DNA Stool kit is an attractive option for the detection and quantification of H. contortus DNA in faecal samples of small ruminants in a diagnostic setting

    Dynamics of Resistant Plasmodium falciparum Parasites

    No full text
    Persistence of drug resistant Plasmodium falciparum is a major problem to management and control malaria in endemic areas. The focus of this thesis was to study the dynamics of resistant P. falciparum parasites. The study was performed in two African countries: 1) Sudan: Asar village in eastern Sudan, here we examined the persistence of drug sensitive and resistant P. falciparum genotypes among individuals with single-clone and multiple clones infection during the dry season. We genotyped microsatellite loci in the vicinity of the dihydrofolate reductase gene (dhfr) and the dihydropteroate synthase gene (dhps). Microsatellite investigation showed that asymptomatic parasitemia persisted in some patients for several months throughout the dry season and into the next transmission season. In some samples mixed infections were detected, and we noted several cases where the microsatellite haplotype varied from month to month, suggesting turnover of different parasite populations in the blood. This demonstrates that even during asymptomatic infections there can be dynamics within the parasite population in an individual. In addition, we calculated the parasite density throughout the dry season to the next transmission season by using allele-specific quantitative PCR. Parasite density during the dry season fluctuated, but was generally lower than in the first transmission season. A significant difference (P<0.05) between dry and first transmission season was found in regard to the parasite density, whereas no significant difference was observed when dry and second transmission season were compared (P>0.05). 2) Ethiopia: West Arsi zone, one of the malaria endemic zones of the Oromia region. In the first study we determined the prevalence of asymptomatic malaria carriages from November-December 2012. According to PCR the prevalence of sub-microscopic P. falciparum carriage was 19.2%, microscopy-based prevalence was 3.7% while the prevalence was 6.9% using RDT. Based on this, PCR was considered a better tool for measuring Plasmodium prevalence than microscopy and RDT. A second study addressed the genetic diversity of chloroquine resistance (CQR) in P. falciparum by analysing four microsatellite markers in and around the pfcrt gene. Although CQ was withdrawn for more than a decade, 100% of the parasites still carried the Pfcrt K76T mutation. Only the CVIET haplotype was identified. Based on combinations of MS markers, seven different Ethiopian CQR variants (E1-E7) were identified. Both intronic and MS flanking the pfcrt gene showed low levels of diversity

    Dynamics of Resistant Plasmodium falciparum Parasites

    No full text
    Persistence of drug resistant Plasmodium falciparum is a major problem to management and control malaria in endemic areas. The focus of this thesis was to study the dynamics of resistant P. falciparum parasites. The study was performed in two African countries: 1) Sudan: Asar village in eastern Sudan, here we examined the persistence of drug sensitive and resistant P. falciparum genotypes among individuals with single-clone and multiple clones infection during the dry season. We genotyped microsatellite loci in the vicinity of the dihydrofolate reductase gene (dhfr) and the dihydropteroate synthase gene (dhps). Microsatellite investigation showed that asymptomatic parasitemia persisted in some patients for several months throughout the dry season and into the next transmission season. In some samples mixed infections were detected, and we noted several cases where the microsatellite haplotype varied from month to month, suggesting turnover of different parasite populations in the blood. This demonstrates that even during asymptomatic infections there can be dynamics within the parasite population in an individual. In addition, we calculated the parasite density throughout the dry season to the next transmission season by using allele-specific quantitative PCR. Parasite density during the dry season fluctuated, but was generally lower than in the first transmission season. A significant difference (P<0.05) between dry and first transmission season was found in regard to the parasite density, whereas no significant difference was observed when dry and second transmission season were compared (P>0.05). 2) Ethiopia: West Arsi zone, one of the malaria endemic zones of the Oromia region. In the first study we determined the prevalence of asymptomatic malaria carriages from November-December 2012. According to PCR the prevalence of sub-microscopic P. falciparum carriage was 19.2%, microscopy-based prevalence was 3.7% while the prevalence was 6.9% using RDT. Based on this, PCR was considered a better tool for measuring Plasmodium prevalence than microscopy and RDT. A second study addressed the genetic diversity of chloroquine resistance (CQR) in P. falciparum by analysing four microsatellite markers in and around the pfcrt gene. Although CQ was withdrawn for more than a decade, 100% of the parasites still carried the Pfcrt K76T mutation. Only the CVIET haplotype was identified. Based on combinations of MS markers, seven different Ethiopian CQR variants (E1-E7) were identified. Both intronic and MS flanking the pfcrt gene showed low levels of diversity

    Dynamics of Resistant Plasmodium falciparum Parasites

    No full text
    Persistence of drug resistant Plasmodium falciparum is a major problem to management and control malaria in endemic areas. The focus of this thesis was to study the dynamics of resistant P. falciparum parasites. The study was performed in two African countries: 1) Sudan: Asar village in eastern Sudan, here we examined the persistence of drug sensitive and resistant P. falciparum genotypes among individuals with single-clone and multiple clones infection during the dry season. We genotyped microsatellite loci in the vicinity of the dihydrofolate reductase gene (dhfr) and the dihydropteroate synthase gene (dhps). Microsatellite investigation showed that asymptomatic parasitemia persisted in some patients for several months throughout the dry season and into the next transmission season. In some samples mixed infections were detected, and we noted several cases where the microsatellite haplotype varied from month to month, suggesting turnover of different parasite populations in the blood. This demonstrates that even during asymptomatic infections there can be dynamics within the parasite population in an individual. In addition, we calculated the parasite density throughout the dry season to the next transmission season by using allele-specific quantitative PCR. Parasite density during the dry season fluctuated, but was generally lower than in the first transmission season. A significant difference (P<0.05) between dry and first transmission season was found in regard to the parasite density, whereas no significant difference was observed when dry and second transmission season were compared (P>0.05). 2) Ethiopia: West Arsi zone, one of the malaria endemic zones of the Oromia region. In the first study we determined the prevalence of asymptomatic malaria carriages from November-December 2012. According to PCR the prevalence of sub-microscopic P. falciparum carriage was 19.2%, microscopy-based prevalence was 3.7% while the prevalence was 6.9% using RDT. Based on this, PCR was considered a better tool for measuring Plasmodium prevalence than microscopy and RDT. A second study addressed the genetic diversity of chloroquine resistance (CQR) in P. falciparum by analysing four microsatellite markers in and around the pfcrt gene. Although CQ was withdrawn for more than a decade, 100% of the parasites still carried the Pfcrt K76T mutation. Only the CVIET haplotype was identified. Based on combinations of MS markers, seven different Ethiopian CQR variants (E1-E7) were identified. Both intronic and MS flanking the pfcrt gene showed low levels of diversity

    Nematode parasitism affects lying time and overall activity patterns in lambs following pasture exposure around weaning

    Get PDF
    We investigated the effects of gastrointestinal nematode (GIN) challenge on activity in first season grazing lambs naturally exposed to two different levels of multispecies GIN infections. Ewes and their twin-born lambs were turned-out to graze in two permanent pasture enclosures naturally contaminated with GIN the previous year, thereby exposing them to overwintering strongyle larvae. Animals in the low parasite exposure group (LP) were dewormed monthly with 0.2 mg ivermectin (Ivomec (R) vet, oral suspension) per kg body weight, whereas those in high parasite exposure group (HP) were left untreated. At weaning, lambs were allocated to one out of four groups based on weight and sex (HPE, n = 15; HPR, n = 15; LPE, n = 14; LPR, n = 14), in four nearby noncontaminated ley enclosures of similar size. Activity patterns were monitored from day -7, i.e. 7 days preweaning, until day 49, i.e. 49 days post-weaning, by fitting all lambs with IceQube sensors (IceRobotics). Body weight was monitored weekly from day -21, whereas faecal samples were investigated at days -21, 7, 35 and 49 for nematode faecal egg counts (EPG) using McMaster-technology and a validated Droplet Digital PCR protocol to determine nematode composition. All statistical analyses were performed in R studio, using mixed models with repeated measures. In the data analyses, weekly recordings was treated as a period, generating a total of eight periods. Average daily lying time had a significant interaction between parasite exposure and period (P = 0.0013), with animals in HP having a 101 +/- 31 min shorter daily lying time compared to LP. Motion Index (MI; absolute value of the 3-D acceleration) had a significant interaction between parasite exposure and period (P = 0.0001) with lambs in group HP having a lower average daily MI compared with LP. Both body weight gain and EPG levels were significantly different (P< 0.0001) between HP and LP groups during the course of the study. The molecular investigation showed that animals were predominantly infected with Teladorsagia spp., combined with low proportions of Haemonchus spp. In conclusion, this study shows that lying time and Motion Index of lambs around weaning was affected by moderate nematode infections. This indicates that there is a potential use of automated behaviour recordings as a diagnostic tool for detection of nematode parasites in lambs even at moderate infection levels

    Detection of a substantial number of sub-microscopic Plasmodium falciparum infections by polymerase chain reaction : a potential threat to malaria control and diagnosis in Ethiopia

    No full text
    Background: Prompt and effective malaria diagnosis not only alleviates individual suffering, but also decreases malaria transmission at the community level. The commonly used diagnostic methods, microscopy and rapid diagnostic tests, are usually insensitive at very low-density parasitaemia. Molecular techniques, on the other hand, allow the detection of low-level, sub-microscopic parasitaemia. This study aimed to explore the presence of sub-microscopic Plasmodium falciparum infections using polymerase chain reaction (PCR). The PCR-based parasite prevalence was compared against microscopy and rapid diagnostic test (RDT). Methods: This study used 1,453 blood samples collected from clinical patients and sub-clinical subjects to determine the prevalence of sub-microscopic P. falciparum carriages. Subsets of RDT and microscopy negative blood samples were tested by PCR while all RDT and microscopically confirmed P. falciparum-infected samples were subjected to PCR. Finger-prick blood samples spotted on filter paper were used for parasite genomic DNA extraction. Results: The prevalence of sub-microscopic P. falciparum carriage was 19.2% (77/400) (95% CI = 15.4-23.1). Microscopy-based prevalence of P. falciparum infection was 3.7% (54/1,453) while the prevalence was 6.9% (100/1,453) using RDT alone. Using microscopy and PCR, the estimated parasite prevalence was 20.6% if PCR were performed in 1,453 blood samples. The prevalence was estimated to be 22.7% if RDT and PCR were used. Of 54 microscopically confirmed P. falciparum-infected subjects, PCR detected 90.7% (49/54). Out of 100 RDT-confirmed P. falciparum infections; PCR detected 80.0% (80/100). The sensitivity of PCR relative to microscopy and RDT was, therefore, 90.7% and 80%, respectively. The sensitivity of microscopy and RDT relative to PCR was 16.5 (49/299) and 24.2% (80/330), respectively. The overall PCR-based prevalence of P. falciparum infection was 5.6- and 3.3 fold higher than that determined by microscopy and RDT, respectively. None of the sub-microscopic subjects had severe anaemia, though 29.4% had mild anaemia (10-11.9 g/dl). Conclusions: Asymptomatic, low-density malaria infection was common in the study area and PCR may be a better tool for measuring Plasmodium prevalence than microscopy and RDT. The inadequate sensitivity of the diagnostic methods to detect substantial number of sub-microscopic parasitaemia would undoubtedly affect malaria control efforts, making reduction of transmission more difficult. RDT and microscopy-based prevalence studies and subsequent reports of reduction in malaria incidence underestimate the true pictures of P. falciparum infections in the community. PCR, on the other hand, seems to have reasonable sensitivity to detect a higher number of infected subjects with low and sub-microscopic parasite densities than RDTs or microscopy

    A novel duplex ddPCR assay for detection and differential diagnosis of Ascaridia galli and Heterakis gallinarum eggs from chickens feces

    Get PDF
    Since the EU ban on battery cages, many studies have listed Ascaridia galli and Heterakis gallinarum as the most common roundworms in the European laying hen population. A complicating factor is that the eggs of these parasites are almost identical. Thus, lack of molecular diagnostic approaches has driven epidemiological studies to take on necropsy for species discrimination, which is labor and cost intensive. Here, we describe a novel diagnostic tool based on droplet digital PCR for simultaneous identification and absolute quantification of the eggs of both of these ascarids in chickens' droppings using two different genus-specific primer-probe sets targeting the second internal transcribed spacer region (ITS-2) in the nuclear ribosomal (rRNA) gene array. No cross-reaction was observed when different combinations of DNA and species-specific primers and probes were tested. The lowest obtained frequency threshold for the detection of H. gallinarum in the presence of a constant A. galli DNA concentration was determined to be 0.8 %. After validation, we used the assay to analyze field samples collected from several Swedish laying hen farms. Out of 134 samples, 86 (64 %) were positive for A. galli while 11 (8.3 %) samples were positive for H. gallinarum. These samples were initially analyzed with flotation technique for detection of ascarid eggs. The results of the Cohen's kappa indicated substantial agreement (85.8 %) between the two tests. In conclusion, we have validated a novel molecular-based diagnostic tool for quantification and differentiation between intestinal parasites of major importance in chickens with high precision. Although this study focuses on identification of parasites of laying hens, the findings may well have a bearing on all types of chicken production systems. The present study lays the groundwork for future research into epidemiology of these two important chicken parasite species
    corecore