13 research outputs found
Paternalism and autonomy: views of patients and providers in a transitional (post-communist) country
Floral odors and the interaction between pollinating Ceratopogonid midges and Cacao
Most plant species depend upon insect pollination services, including many cash and subsistence crops. Plants compete to attract those insects using visual cues and floral odor which pollinators associate with a reward. The cacao tree, Theobroma cacao, has a highly specialized floral morphology permitting pollination primarily by Ceratopogonid midges. However, these insects do not depend upon cacao flowers for their life cycle, and can use other sugar sources. To understand how floral cues mediate pollination in cacao we developed a method for rearing Ceratopogonidae through several complete lifecycles to provide material for bioassays. We carried out collection and analysis of cacao floral volatiles, and identified a bouquet made up exclusively of saturated and unsaturated, straight-chain hydrocarbons, which is unusual among floral odors. The most abundant components were tridecane, pentadecane, (Z)-7-pentadecene and (Z)-8-heptadecene with a heptadecadiene and heptadecatriene as minor components. We presented adult midges, Forcipomyia sp. (subgen. Forcipomyia), Culicoides paraensis and Dasyhelea borgmeieri, with natural and synthetic cacao flower odors in choice assays. Midges showed weak attraction to the complete natural floral odor in the assay, with no significant evidence of interspecific differences. This suggests that cacao floral volatiles play a role in pollinator behavior. Midges were not attracted to a synthetic blend of the above four major components of cacao flower odor, indicating that a more complete blend is required for attraction. Our findings indicate that cacao pollination is likely facilitated by the volatile blend released by flowers, and that the system involves a generalized odor response common to different species of Ceratopogonidae
Risk Assessment Studies: Detailed Host Range Testing of Wild-Type Cabbage Moth, Mamestra brassicae (Lepidoptera: Noctuidae), Nuclear Polyhedrosis Virus
The host range of a multiply enveloped nuclear polyhedrosis virus (NPV) (Baculoviridae) isolated from the cabbage moth, Mamestra brassicae (Lepidoptera: Noctuidae), was determined by challenging a wide range of insect species with high (10(6) polyhedral inclusion bodies) and low (10(3) polyhedral inclusion bodies) doses of the virus. The identity of the progeny virus was confirmed by dot blotting. Analysis of 50% lethal dose was carried out on selected species, and the progeny virus was identified by using restriction enzyme analysis and Southern blotting. Other than the Lepidoptera, none of the species tested was susceptible to M. brassicae NPV. Within the Lepidoptera, M. brassicae NPV was infective to members of four families (Noctuidae, Geometridae, Yponomeutidae, and Nymphalidae). Of 66 lepidopterous species tested, M. brassicae NPV was cross-infective to 32 of them; however, 91% of the susceptible species were in the Noctuidae. The relevance of host range data in risk assessment studies is discussed
Characterization of a Small RNA-Containing Virus in Field-Collected Larvae of the Tussock Moth, Lymantria ninayi, from Papua New Guinea
Field-collected larvae of the tussock moth, Lymantria ninayi, a major pest of exotic pines in Papua New Guinea, were found to contain a small RNA-containing virus with a diameter of 29 nm and a buoyant density of 1.32 g/ml. The RNA was single stranded, had a molecular weight of 2.8 Ă— 10(6), and was polyadenylated. Virion RNA stimulated an in vitro translation system, and high-molecular-weight proteins were produced. Purified virions contained four structural proteins with molecular weights of 43,000, 38,000, 33,000, and 32,000. The virus reacted positively with antisera raised against a strain of Drosophila C virus. The properties of this virus indicate that it should be placed in the family Picornaviridae
An investigation of assessment and feedback practices in fully asynchronous online undergraduate mathematics courses
This is an Accepted Manuscript of an article published by Taylor & Francis in International Journal of Mathematical Education in Science and Technology on 1st May 2015 available online: http://www.tandfonline.com/10.1080/0020739X.2015.1036946Research suggests it is difficult to learn mathematics in the fully asynchronous online (FAO) instructional modality, yet little is known about associated teaching and assessment practices. In this study, we investigate FAO mathematics assessment and feedback practices in particular consideration of both claims and findings that these practices have a powerful influence on learning.
A survey questionnaire was constructed and completed by 70 FAO undergraduate mathematics instructors, mostly from the USA, who were each asked to detail their assessment and feedback practices in a single FAO mathematics course. Alongside these questions, participants also answered the 16-item version of the Approaches to Teaching Inventory. In addition, a novel feedback framework was also created and used to examine how feedback practices may be related to participants' approaches to teaching.
Results show that assessment and feedback practices are varied and complex: in particular, we found there was not a simple emphasis on summative assessment instruments, nor a concomitant expectation these would always be invigilated. Though richer assessment feedback appears to be emphasized, evidence suggests this feedback may not be primarily directed at advancing student learning. Moreover, we found evidence of a reliance on computer--human interactions (e.g. via computer-assisted assessment systems) and further evidence of a decline in human interactions, suggesting a dynamic that is both consistent with current online learning theory and claims FAO mathematics courses are becoming commodified. Several avenues for further research are suggested