235 research outputs found

    Adaptively evolved Escherichia coli for improved ability of formate utilization as a carbon source in sugar???free conditions

    Get PDF
    Background: Formate converted from CO2 reduction has great potential as a sustainable feedstock for biological production of biofuels and biochemicals. Nevertheless, utilization of formate for growth and chemical production by microbial species is limited due to its toxicity or the lack of a metabolic pathway. Here, we constructed a formate assimilation pathway in Escherichia coli and applied adaptive laboratory evolution to improve formate utilization as a carbon source in sugar-free conditions. Results: The genes related to the tetrahydrofolate and serine cycles from Methylobacterium extorquens AM1 were overexpressed for formate assimilation, which was proved by the 13C-labeling experiments. The amino acids detected by GC/MS showed significant carbon labeling due to biomass production from formate. Then, 150 serial subcultures were performed to screen for evolved strains with improved ability to utilize formate. The genomes of evolved mutants were sequenced and the mutations were associated with formate dehydrogenation, folate metabolism, and biofilm formation. Last, 90 mg/L of ethanol production from formate was achieved using fed-batch cultivation without addition of sugars. Conclusion: This work demonstrates the effectiveness of the introduction of a formate assimilation pathway, combined with adaptive laboratory evolution, to achieve the utilization of formate as a carbon source. This study suggests that the constructed E. coli could serve as a strain to exploit formate and captured CO2

    Carbon Dioxide Utilisation -The Formate Route

    Get PDF
    UIDB/50006/2020 CEEC-Individual 2017 Program Contract.The relentless rise of atmospheric CO2 is causing large and unpredictable impacts on the Earth climate, due to the CO2 significant greenhouse effect, besides being responsible for the ocean acidification, with consequent huge impacts in our daily lives and in all forms of life. To stop spiral of destruction, we must actively reduce the CO2 emissions and develop new and more efficient “CO2 sinks”. We should be focused on the opportunities provided by exploiting this novel and huge carbon feedstock to produce de novo fuels and added-value compounds. The conversion of CO2 into formate offers key advantages for carbon recycling, and formate dehydrogenase (FDH) enzymes are at the centre of intense research, due to the “green” advantages the bioconversion can offer, namely substrate and product selectivity and specificity, in reactions run at ambient temperature and pressure and neutral pH. In this chapter, we describe the remarkable recent progress towards efficient and selective FDH-catalysed CO2 reduction to formate. We focus on the enzymes, discussing their structure and mechanism of action. Selected promising studies and successful proof of concepts of FDH-dependent CO2 reduction to formate and beyond are discussed, to highlight the power of FDHs and the challenges this CO2 bioconversion still faces.publishersversionpublishe

    Sample treatment for tissue proteomics in cancer, toxicology, and forensics

    Get PDF
    Since the birth of proteomics science in the 1990, the number of applications and of sample preparation methods has grown exponentially, making a huge contribution to the knowledge in life science disciplines. Continuous improvements in the sample treatment strategies unlock and reveal the fine details of disease mechanisms, drug potency, and toxicity as well as enable new disciplines to be investigated such as forensic science. This chapter will cover the most recent developments in sample preparation strategies for tissue proteomics in three areas, namely, cancer, toxicology, and forensics, thus also demonstrating breath of application within the domain of health and well-being, pharmaceuticals, and secure societies. In particular, in the area of cancer (human tumor biomarkers), the most efficient and multi-informative proteomic strategies will be covered in relation to the subsequent application of matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) and liquid extraction surface analysis (LESA), due to their ability to provide molecular localization of tumor biomarkers albeit with different spatial resolution. With respect to toxicology, methodologies applied in toxicoproteomics will be illustrated with examples from its use in two important areas: the study of drug-induced liver injury (DILI) and studies of effects of chemical and environmental insults on skin, i.e., the effects of irritants, sensitizers, and ionizing radiation. Within this chapter, mainly tissue proteomics sample preparation methods for LC-MS/MS analysis will be discussed as (i) the use of LC-MS/MS is majorly represented in the research efforts of the bioanalytical community in this area and (ii) LC-MS/MS still is the gold standard for quantification studies. Finally, the use of proteomics will also be discussed in forensic science with respect to the information that can be recovered from blood and fingerprint evidence which are commonly encountered at the scene of the crime. The application of proteomic strategies for the analysis of blood and fingerprints is novel and proteomic preparation methods will be reported in relation to the subsequent use of mass spectrometry without any hyphenation. While generally yielding more information, hyphenated methods are often more laborious and time-consuming; since forensic investigations need quick turnaround, without compromising validity of the information, the prospect to develop methods for the application of quick forensic mass spectrometry techniques such as MALDI-MS (in imaging or profiling mode) is of great interest

    Preparation and Hydrosilylation Activity of a Molybdenum Carbonyl Complex That Features a Pentadentate Bis(imino)pyridine Ligand

    Full text link
    • 

    corecore