16 research outputs found

    Modes of Foreign Entry under Asymmetric Information about Potential Technology Spillovers

    Get PDF
    This paper studies the effect of technology spillovers on the entry decision of a multinational enterprise into a foreign market. Two alternative entry modes for a foreign direct investment are considered: Greenfield investment versus acquisition. We find that with quantity competition a spillover makes acquisitions less attractive, while with price competition acquisitions become more attractive. Asymmetric information about potential spillovers always reduces the number of acquisitions independently of whether the host country or the entrant has private information. Interestingly, we find that asymmetric information always hurts the entrant, while it sometimes is in favor of the host country

    Factors affecting the fate of ciprofloxacin in aquatic field systems

    No full text
    Ciprofloxacin (cipro) is a broad-spectrum antibiotic used in human and veterinary medicine that is readily transported into the environment via domestic wastewaters and through direct runoff. Although factors governing cipro fate are becoming understood, an integrated evaluation of disappearance mechanisms in aquatic systems has not been performed. Here we examined cipro disappearance rate in surface waters using both laboratory and field systems under different light, and dissolved (DOC) and particulate organic carbon (POC) conditions to determine when photodegradation versus adsorption dominates cipro fate. Initial laboratory experiments showed that cipro rapidly photodegraded (t(1/2) ∼ 1.5 h) with numerous photodegradation products being noted when POC levels were low. However, even moderate water column POC levels resulted in reduced photodegradation ( no breakdown products detected) and soluble cipro disappearance rates were accelerated. C-14-ciprofloxacin studies confirmed significant adsorption onto aquatic POC (KOC values of 13,900 to 20,500 L/kg at neutral pH). In contrast, a follow-up mesocosm-scale field study using low POC water showed that photodegradation could also dominate cipro fate. In conclusion, both adsorption and photodegradation strongly influence cipro fate in aquatic systems, although the dominant mechanism appears to depend upon the ambient POC level
    corecore