3 research outputs found

    Co-inhibition of BET proteins and PI3K alpha triggers mitochondrial apoptosis in rhabdomyosarcoma cells

    No full text
    Remodeling transcription by targeting bromodomain and extraterminal (BET) proteins has emerged as promising anticancer strategy. Here, we identify a novel synergistic interaction of the BET inhibitor JQ1 with the PI3K alpha-specific inhibitor BYL719 to trigger mitochondrial apoptosis and to suppress tumor growth in models of rhabdomyosarcoma (RMS). RNA-Seq revealed that JQ1/BYL719 co-treatment shifts the overall balance of BCL-2 family gene expression towards apoptosis and upregulates expression of BMF, BCL2L11 (BIM), and PMAIP1 (NOXA) while downregulating BCL2L1 (BCL-x(L)). These changes were confirmed by qRT-PCR and western blot analysis. Ingenuity pathway analysis (IPA) of RNA-Seq data followed by validation qRT-PCR and western blot identified MYC and FOXO3a as potential transcription factors (TFs) upstream of the observed gene expression pattern. Immunoprecipitation (IP) studies showed that JQ1/BYL719-stimulated increase in BIM expression enhances the neutralization of antiapoptotic BCL-2, BCL-x(L), and MCL-1. This promotes the activation of BAK and BAX and caspase-dependent apoptosis, as (1) individual silencing of BMF, BIM, NOXA, BAK, or BAX, (2) overexpression of BCL-2 or MCL-1 or (3) the caspase inhibitor N-Benzyloxycarbonyl-Val-Ala-Asp(O-Me) fluoromethylketone (zVAD.fmk) all rescue JQ1/BYL719-induced cell death. In conclusion, co-inhibition of BET proteins and PI3K alpha cooperatively induces mitochondrial apoptosis by proapoptotic re-balancing of BCL-2 family proteins. This discovery opens exciting perspectives for therapeutic exploitation of BET inhibitors in RMS

    Targeting nucleic acid sensors in tumor cells to reprogram biogenesis and RNA cargo of extracellular vesicles for T cell-mediated cancer immunotherapy

    Get PDF
    Tumor-derived extracellular vesicles (EVs) have been associated with immune evasion and tumor progression. We show that the RNA-sensing receptor RIG-I within tumor cells governs biogenesis and immunomodulatory function of EVs. Cancer-intrinsic RIG-I activation releases EVs, which mediate dendritic cell maturation and T cell antitumor immunity, synergizing with immune checkpoint blockade. Intact RIG-I, autocrine interferon signaling, and the GTPase Rab27a in tumor cells are required for biogenesis of immunostimulatory EVs. Active intrinsic RIG-I signaling governs composition of the tumor EV RNA cargo including small non-coding stimulatory RNAs. High transcriptional activity of EV pathway genes and RIG-I in melanoma samples associate with prolonged patient survival and beneficial response to immunotherapy. EVs generated from human melanoma after RIG-I stimulation induce potent antigen-specific T cell responses. We thus define a molecular pathway that can be targeted in tumors to favorably alter EV immunomodulatory function. We propose “reprogramming” of tumor EVs as a personalized strategy for T cell-mediated cancer immunotherapy
    corecore