18 research outputs found

    Including Functional Annotations and Extending the Collection of Structural Classifications of Protein Loops (ArchDB)

    Get PDF
    Loops represent an important part of protein structures. The study of loop is critical for two main reasons: First, loops are often involved in protein function, stability and folding. Second, despite improvements in experimental and computational structure prediction methods, modeling the conformation of loops remains problematic. Here, we present a structural classification of loops, ArchDB, a mine of information with application in both mentioned fields: loop structure prediction and function prediction. ArchDB (http://sbi.imim.es/archdb) is a database of classified protein loop motifs. The current database provides four different classification sets tailored for different purposes. ArchDB-40, a loop classification derived from SCOP40, well suited for modeling common loop motifs. Since features relevant to loop structure or function can be more easily determined on well-populated clusters, we have developed ArchDB-95, a loop classification derived from SCOP95. This new classification set shows a ~40% increase in the number of subclasses, and a large 7-fold increase in the number of putative structure/function-related subclasses. We also present ArchDB-EC, a classification of loop motifs from enzymes, and ArchDB-KI, a manually annotated classification of loop motifs from kinases. Information about ligand contacts and PDB sites has been included in all classification sets. Improvements in our classification scheme are described, as well as several new database features, such as the ability to query by conserved annotations, sequence similarity, or uploading 3D coordinates of a protein. The lengths of classified loops range between 0 and 36 residues long. ArchDB offers an exhaustive sampling of loop structures. Functional information about loops and links with related biological databases are also provided. All this information and the possibility to browse/query the database through a web-server outline an useful tool with application in the comparative study of loops, the analysis of loops involved in protein function and to obtain templates for loop modeling

    Pathogen Proteins Eliciting Antibodies Do Not Share Epitopes with Host Proteins: A Bioinformatics Approach

    Get PDF
    The best way to prevent diseases caused by pathogens is by the use of vaccines. The advent of genomics enables genome-wide searches of new vaccine candidates, called reverse vaccinology. The most common strategy to apply reverse vaccinology is by designing subunit recombinant vaccines, which usually generate an humoral immune response due to B-cell epitopes in proteins. A major problem for this strategy is the identification of protective immunogenic proteins from the surfome of the pathogen. Epitope mimicry may lead to auto-immune phenomena related to several human diseases. A sequence-based computational analysis has been carried out applying the BLASTP algorithm. Therefore, two huge databases have been created, one with the most complete and current linear B-cell epitopes, and the other one with the surface-protein sequences of the main human respiratory bacterial pathogens. We found that none of the 7353 linear B-cell epitopes analysed shares any sequence identity region with human proteins capable of generating antibodies, and that only 1% of the 2175 exposed proteins analysed contain a stretch of shared sequence with the human proteome. These findings suggest the existence of a mechanism to avoid autoimmunity. We also propose a strategy for corroborating or warning about the viability of a protein linear B-cell epitope as a putative vaccine candidate in a reverse vaccinology study; so, epitopes without any sequence identity with human proteins should be very good vaccine candidates, and the other way around

    Including Functional Annotations and Extending the Collection of Structural Classifications of Protein Loops (ArchDB).

    Get PDF
    Loops represent an important part of protein structures. The study of loop is critical for two main reasons: First, loops are often involved in protein function, stability and folding. Second, despite improvements in experimental and computational structure prediction methods, modeling the conformation of loops remains problematic. Here, we present a structural classification of loops, ArchDB, a mine of information with application in both mentioned fields: loop structure prediction and function prediction. ArchDB (http://sbi.imim.es/archdb) is a database of classified protein loop motifs. The current database provides four different classification sets tailored for different purposes. ArchDB-40, a loop classification derived from SCOP40, well suited for modeling common loop motifs. Since features relevant to loop structure or function can be more easily determined on well-populated clusters, we have developed ArchDB-95, a loop classification derived from SCOP95. This new classification set shows a ~40% increase in the number of subclasses, and a large 7-fold increase in the number of putative structure/function-related subclasses. We also present ArchDB-EC, a classification of loop motifs from enzymes, and ArchDB-KI, a manually annotated classification of loop motifs from kinases. Information about ligand contacts and PDB sites has been included in all classification sets. Improvements in our classification scheme are described, as well as several new database features, such as the ability to query by conserved annotations, sequence similarity, or uploading 3D coordinates of a protein. The lengths of classified loops range between 0 and 36 residues long. ArchDB offers an exhaustive sampling of loop structures. Functional information about loops and links with related biological databases are also provided. All this information and the possibility to browse/query the database through a web-server outline an useful tool with application in the comparative study of loops, the analysis of loops involved in protein function and to obtain templates for loop modeling

    Including Functional Annotations and Extending the Collection of Structural Classifications of Protein Loops (ArchDB)

    Get PDF
    Loops represent an important part of protein structures. The study of loop is critical for two main reasons: First, loops are often involved in protein function, stability and folding. Second, despite improvements in experimental and computational structure prediction methods, modeling the conformation of loops remains problematic. Here, we present a structural classification of loops, ArchDB, a mine of information with application in both mentioned fields: loop structure prediction and function prediction. ArchDB (http://sbi.imim.es/archdb) is a database of classified protein loop motifs. The current database provides four different classification sets tailored for different purposes. ArchDB-40, a loop classification derived from SCOP40, well suited for modeling common loop motifs. Since features relevant to loop structure or function can be more easily determined on well-populated clusters, we have developed ArchDB-95, a loop classification derived from SCOP95. This new classification set shows a āˆ¼40% increase in the number of subclasses, and a large 7-fold increase in the number of putative structure/function-related subclasses. We also present ArchDB-EC, a classification of loop motifs from enzymes, and ArchDB-KI, a manually annotated classification of loop motifs from kinases. Information about ligand contacts and PDB sites has been included in all classification sets. Improvements in our classification scheme are described, as well as several new database features, such as the ability to query by conserved annotations, sequence similarity, or uploading 3D coordinates of a protein. The lengths of classified loops range between 0 and 36 residues long. ArchDB offers an exhaustive sampling of loop structures. Functional information about loops and links with related biological databases are also provided. All this information and the possibility to browse/query the database through a web-server outline an useful tool with application in the comparative study of loops, the analysis of loops involved in protein function and to obtain templates for loop modeling
    corecore