38 research outputs found

    The enzymic synthesis of trehalose phosphate

    Get PDF
    originalFil: Leloir, Luis Federico. Instituto de Investigaciones Bioquímicas Fundación Campomar; ArgentinaFil: Cabib, Enrico. Instituto de Investigaciones Bioquímicas Fundación Campomar; ArgentinaBlanco y negro2 páginas en pdfLFL-PI-O-ART. Artículos científicosUnidad documental simpleAR-HYL-201

    The biosynthesis of trehalose phosphate

    Get PDF
    originalFil: Cabib, Enrico. Instituto de Investigaciones Bioquímicas Fundación Campomar; ArgentinaFil: Leloir, Luis Federico. Instituto de Investigaciones Bioquímicas Fundación Campomar; ArgentinaBlanco y negro17 páginas en pdfLFL-PI-O-ART. Artículos científicosUnidad documental simpleAR-HYL-201

    Guanosine diphosphate mannose

    Get PDF
    originalFil: Cabib, Enrico. Instituto de Investigaciones Bioquímicas Fundación Campomar; ArgentinaFil: Leloir, Luis Federico. Instituto de Investigaciones Bioquímicas Fundación Campomar; ArgentinaBlanco y negro12 páginas en pdfLFL-PI-O-ART. Artículos científicosUnidad documental simpleAR-HYL-201

    Uridine diphosphate acetylglucosamine

    Get PDF
    originalFil: Cabib, Enrico. Instituto de Investigaciones Bioquímicas Fundación Campomar; ArgentinaFil: Leloir, Luis Federico. Instituto de Investigaciones Bioquímicas Fundación Campomar; ArgentinaFil: Cardini, Carlos E.. Instituto de Investigaciones Bioquímicas Fundación Campomar; ArgentinaBlanco y negro16 páginas en pdfLFL-PI-O-ART. Artículos científicosUnidad documental simpleAR-HYL-201

    Uridina-difosfato-acetilglucosamina aislamiento e identificación

    Get PDF
    originalFil: Cabib, Enrico. Instituto de Investigaciones Bioquímicas Fundación Campomar; ArgentinaFil: Leloir, Luis Federico. Instituto de Investigaciones Bioquímicas Fundación Campomar; ArgentinaFil: Cardini, Carlos E.. Instituto de Investigaciones Bioquímicas Fundación Campomar; ArgentinaBlanco y negro2 páginas en pdfLFL-PI-O-ART. Artículos científicosUnidad documental simpleAR-HYL-201

    Stress-Induced Reinstatement of Drug Seeking: 20 Years of Progress

    Get PDF
    In human addicts, drug relapse and craving are often provoked by stress. Since 1995, this clinical scenario has been studied using a rat model of stress-induced reinstatement of drug seeking. Here, we first discuss the generality of stress-induced reinstatement to different drugs of abuse, different stressors, and different behavioral procedures. We also discuss neuropharmacological mechanisms, and brain areas and circuits controlling stress-induced reinstatement of drug seeking. We conclude by discussing results from translational human laboratory studies and clinical trials that were inspired by results from rat studies on stress-induced reinstatement. Our main conclusions are (1) The phenomenon of stress-induced reinstatement, first shown with an intermittent footshock stressor in rats trained to self-administer heroin, generalizes to other abused drugs, including cocaine, methamphetamine, nicotine, and alcohol, and is also observed in the conditioned place preference model in rats and mice. This phenomenon, however, is stressor specific and not all stressors induce reinstatement of drug seeking. (2) Neuropharmacological studies indicate the involvement of corticotropin-releasing factor (CRF), noradrenaline, dopamine, glutamate, kappa/dynorphin, and several other peptide and neurotransmitter systems in stress-induced reinstatement. Neuropharmacology and circuitry studies indicate the involvement of CRF and noradrenaline transmission in bed nucleus of stria terminalis and central amygdala, and dopamine, CRF, kappa/dynorphin, and glutamate transmission in other components of the mesocorticolimbic dopamine system (ventral tegmental area, medial prefrontal cortex, orbitofrontal cortex, and nucleus accumbens). (3) Translational human laboratory studies and a recent clinical trial study show the efficacy of alpha-2 adrenoceptor agonists in decreasing stress-induced drug craving and stress-induced initial heroin lapse

    The genetic interaction network of CCW12, a Saccharomyces cerevisiae gene required for cell wall integrity during budding and formation of mating projections

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mannoproteins construct the outer cover of the fungal cell wall. The covalently linked cell wall protein Ccw12p is an abundant mannoprotein. It is considered as crucial structural cell wall component since in baker's yeast the lack of <it>CCW12 </it>results in severe cell wall damage and reduced mating efficiency.</p> <p>Results</p> <p>In order to explore the function of <it>CCW12</it>, we performed a Synthetic Genetic Analysis (SGA) and identified genes that are essential in the absence of <it>CCW12</it>. The resulting interaction network identified 21 genes involved in cell wall integrity, chitin synthesis, cell polarity, vesicular transport and endocytosis. Among those are <it>PFD1</it>, <it>WHI3</it>, <it>SRN2</it>, <it>PAC10</it>, <it>FEN1 </it>and <it>YDR417C</it>, which have not been related to cell wall integrity before. We correlated our results with genetic interaction networks of genes involved in glucan and chitin synthesis. A core of genes essential to maintain cell integrity in response to cell wall stress was identified. In addition, we performed a large-scale transcriptional analysis and compared the transcriptional changes observed in mutant <it>ccw12</it>Δ with transcriptomes from studies investigating responses to constitutive or acute cell wall damage. We identified a set of genes that are highly induced in the majority of the mutants/conditions and are directly related to the cell wall integrity pathway and cell wall compensatory responses. Among those are <it>BCK1</it>, <it>CHS3</it>, <it>EDE1</it>, <it>PFD1</it>, <it>SLT2 </it>and <it>SLA1 </it>that were also identified in the SGA. In contrast, a specific feature of mutant <it>ccw12</it>Δ is the transcriptional repression of genes involved in mating. Physiological experiments substantiate this finding. Further, we demonstrate that Ccw12p is present at the cell periphery and highly concentrated at the presumptive budding site, around the bud, at the septum and at the tip of the mating projection.</p> <p>Conclusions</p> <p>The combination of high throughput screenings, phenotypic analyses and localization studies provides new insight into the function of Ccw12p. A compensatory response, culminating in cell wall remodelling and transport/recycling pathways is required to buffer the loss of <it>CCW12</it>. Moreover, the enrichment of Ccw12p in bud, septum and mating projection is consistent with a role of Ccw12p in preserving cell wall integrity at sites of active growth.</p> <p>The microarray data produced in this analysis have been submitted to NCBI GEO database and GSE22649 record was assigned.</p

    Presence of a large β(1-3)glucan linked to chitin at the Saccharomyces cerevisiae mother-bud neck suggests involvement in localized growth control

    Get PDF
    Previous results suggested that the chitin ring present at the yeast mother-bud neck, which is linked specifically to the nonreducing ends of β(1-3)glucan, may help to suppress cell wall growth at the neck by competing with β(1-6)glucan and thereby with mannoproteins for their attachment to the same sites. Here we explored whether the linkage of chitin to β(1-3)glucan may also prevent the remodeling of this polysaccharide that would be necessary for cell wall growth. By a novel mild procedure, β(1-3)glucan was isolated from cell walls, solubilized by carboxymethylation, and fractionated by size exclusion chromatography, giving rise to a very high-molecular-weight peak and to highly polydisperse material. The latter material, soluble in alkali, may correspond to glucan being remodeled, whereas the large-size fraction would be the final cross-linked structural product. In fact, the β(1-3)glucan of buds, where growth occurs, is solubilized by alkali. A gas1 mutant with an expected defect in glucan elongation showed a large increase in the polydisperse fraction. By a procedure involving sodium hydroxide treatment, carboxymethylation, fractionation by affinity chromatography on wheat germ agglutinin-agarose, and fractionation by size chromatography on Sephacryl columns, it was shown that the β(1-3)glucan attached to chitin consists mostly of high-molecular-weight material. Therefore, it appears that linkage to chitin results in a polysaccharide that cannot be further remodeled and does not contribute to growth at the neck. In the course of these experiments, the new finding was made that part of the chitin forms a noncovalent complex with β(1-3)glucan

    Carta de Enrico Cabib a Luis F. Leloir

    No full text
    Incluye una fotocopia del artículo: Research on Sugar Nucleotides Brings Honor to Argentinian Biochemist de Enrico Cabib publicado en la revista Science Vol 170 de Noviembre de 1970.originalFil: Cabib, Enrico.1 página en papelLFL-ACE. Artículos en la prensa sobre LFL, su obra y/o actividadesUnidad documental compuest
    corecore