50 research outputs found

    Assessment of an Adaptive Efficient Thermal/Electric Skipping Control Strategy for the Management of a Parallel Plug-in Hybrid Electric Vehicle

    Get PDF
    In the current scenario, where environmental concern determines the evolution of passenger cars, hybrid electric vehicles (HEV) represent a hub in the automotive sector to reach net-zero CO2 emissions. To fully exploit the energy conversion potential of advanced powertrains, proper energy management strategies are mandatory. In this work, a simulation study is presented, aiming at developing a new control strategy for a P3 parallel plug-in HEV (PHEV). The simulation model is built on MATLAB/Simulink. The proposed strategy is based on an alternative utilization of the thermal engine and electric motor to provide the vehicle power demand (efficient thermal/electric skipping strategy (ETESS)). An adaptive function is then introduced to develop a charge-blended control strategy. Fuel consumption along different driving cycles is evaluated by applying the novel adaptive-ETESS (A-ETESS). To have a proper comparison, the same adaptive function is built on the equivalent consumption minimization strategy (ECMS). Processor-in-the-loop (PIL) simulations are performed to benchmark the A-ETESS. Simulation results highlighted that the proposed strategy provides for a fuel economy similar to ECMS (worse of about 2.5% on average) and a computational effort reduced by 99% on average, opening the possibility of real-time on-vehicle applications

    Clinical global impression-severity score as a reliable measure for routine evaluation of remission in schizophrenia and schizoaffective disorders

    Get PDF
    Aims: This study aimed to compare the performance of Positive and Negative Syndrome Scale (PANSS) symptom severity criteria established by the Remission in Schizophrenia Working Group (RSWG) with criteria based on Clinical Global Impression (CGI) severity score. The 6-month duration criterion was not taken into consideration. Methods: A convenience sample of 112 chronic psychotic outpatients was examined. Symptomatic remission was evaluated according to RSWG severity criterion and to a severity criterion indicated by the overall score obtained at CGI-Schizophrenia (CGI-SCH) rating scale (≤3) (CGI-S). Results: Clinical remission rates of 50% and 49.1%, respectively, were given by RSWG and CGI-S, with a significant level of agreement between the two criteria in identifying remitted and non-remitted cases. Mean scores at CGI-SCH and PANSS scales were significantly higher among remitters, independent of the remission criteria adopted. Measures of cognitive functioning were largely independent of clinical remission evaluated according to both RSWG and CGI-S. When applying RSWG and CGI-S criteria, the rates of overall good functioning yielded by Personal and Social Performance scale (PSP) were 32.1% and 32.7%, respectively, while the mean scores at PSP scale differed significantly between remitted and non-remitted patients, independent of criteria adopted. The proportion of patients judged to be in a state of well-being on Social Well-Being Under Neuroleptics-Short Version scale (SWN-K) were, respectively, 66.1% and 74.5% among remitters according to RSWG and CGI-S; the mean scores at the SWN scale were significantly higher only among remitters according to CGI-S criteria. Conclusions: CGI severity criteria may represent a valid and user-friendly alternative for use in identifying patients in remission, particularly in routine clinical practic

    Multimodel assessment of climate change-induced hydrologic impacts for a Mediterranean catchment

    Get PDF
    This work addresses the impact of climate change on the hydrology of a catchment in the Mediterranean, a region that is highly susceptible to variations in rainfall and other components of the water budget. The assessment is based on a comparison of responses obtained from five hydrologic models implemented for the Rio Mannu catchment in southern Sardinia (Italy). The examined models - CATchment HYdrology (CATHY), Soil and Water Assessment Tool (SWAT), TOPographic Kinematic APproximation and Integration (TOPKAPI), TIN-based Real time Integrated Basin Simulator (tRIBS), and WAter balance SImulation Model (WASIM) - are all distributed hydrologic models but differ greatly in their representation of terrain features and physical processes and in their numerical complexity. After calibration and validation, the models were forced with biascorrected, downscaled outputs of four combinations of global and regional climate models in a reference (1971-2000) and future (2041-2070) period under a single emission scenario. Climate forcing variations and the structure of the hydrologic models influence the different components of the catchment response. Three water availability response variables - discharge, soil water content, and actual evapotranspiration - are analyzed. Simulation results from all five hydrologic models show for the future period decreasing mean annual streamflow and soil water content at 1m depth. Actual evapotranspiration in the future will diminish according to four of the five models due to drier soil conditions. Despite their significant differences, the five hydrologic models responded similarly to the reduced precipitation and increased temperatures predicted by the climate models, and lend strong support to a future scenario of increased water shortages for this region of the Mediterranean basin. The multimodel framework adopted for this study allows estimation of the agreement between the five hydrologic models and between the four climate models. Pairwise comparison of the climate and hydrologic models is shown for the reference and future periods using a recently proposed metric that scales the Pearson correlation coefficient with a factor that accounts for systematic differences between datasets. The results from this analysis reflect the key structural differences between the hydrologic models, such as a representation of both vertical and lateral subsurface flow (CATHY, TOPKAPI, and tRIBS) and a detailed treatment of vegetation processes (SWAT and WASIM)

    Oil Essential Mouthwashes Antibacterial Activity against Aggregatibacter actinomycetemcomitans: A Comparison between Antibiofilm and Antiplanktonic Effects

    Get PDF
    The aim of this work is to determine the antibacterial activity of three marketed mouthwashes on suspended and sessile states of Aggregatibacter actinomycetemcomitans. The efficacy of two commonly used products in clinical practice, containing essential oils as active ingredients (menthol, thymol, methyl salicylate, and eucalyptol) in association with or without alcohol, has been evaluated in comparison with a chlorhexidine-based mouthwash. The microtiter plate assay, in order to obtain a spectrophotometric measurement of bacterial responses at growing dilutions of each antiseptic, was used for the study. The analysis revealed that a good antibacterial activity is reached when the abovementioned mouthwashes were used at concentration over a 1/24 dilution and after an exposure time of 30 seconds at least. In conclusion, the alcoholic mouthwash appears to have a better biofilm inhibition than its antiplanktonic activity while the nonalcoholic product demonstrates an opposite effect with a better antiplanktonic behavior

    Thermodynamic properties of binary mixtures containing oxaalkanes: Part V. Monoethers, acetals, polyethers, cyclic mono- and di-ethers+benzene

    No full text
    A flow microcalorimeter has been used to determine excess enthalpies, H (E), at 298.15 K of binary mixtures of dipentylether, dihexylether, 1,2-dimethoxyethane and 1,2-diethoxyethane (1)+benzene (2). These data along with the data available in the literature on H (E), molar excess Gibbs energies, G (E) and liquid-vapour equilibria (LVE) of non-cyclic monoethers, acetals, polyethers and of cyclic mono- and di-ethers+benzene are examined on the basis of the DISQUAC group contribution model. Using a set of adjusted interchange energies parameters, structure dependent, the model provides a fairly consistent description of the thermodynamic properties as a function of concentration. The interaction parameters, dispersive and quasichemical, depend on the intramolecular environment of the O atom. There is clear evidence for the steric and inductive effects exerted by the alkyl groups adjacent to the O atom, for -O-C-O- proximity effect and for a ring strain effect. The steric effect results in a regular decrease of the dispersive interaction parameters of the oxygen/benzene (e,b) contact; The proximity effect of the O atoms produces a regular decrease and the ring strain a regular increase of the dispersive interaction parameters; the quasi-chemical remain constant
    corecore