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Abstract: In the current scenario, where environmental concern determines the evolution of passenger
cars, hybrid electric vehicles (HEV) represent a hub in the automotive sector to reach net-zero CO2

emissions. To fully exploit the energy conversion potential of advanced powertrains, proper energy
management strategies are mandatory. In this work, a simulation study is presented, aiming at
developing a new control strategy for a P3 parallel plug-in HEV (PHEV). The simulation model is
built on MATLAB/Simulink. The proposed strategy is based on an alternative utilization of the
thermal engine and electric motor to provide the vehicle power demand (efficient thermal/electric
skipping strategy (ETESS)). An adaptive function is then introduced to develop a charge-blended
control strategy. Fuel consumption along different driving cycles is evaluated by applying the novel
adaptive-ETESS (A-ETESS). To have a proper comparison, the same adaptive function is built on the
equivalent consumption minimization strategy (ECMS). Processor-in-the-loop (PIL) simulations are
performed to benchmark the A-ETESS. Simulation results highlighted that the proposed strategy
provides for a fuel economy similar to ECMS (worse of about 2.5% on average) and a computational
effort reduced by 99% on average, opening the possibility of real-time on-vehicle applications.

Keywords: hybrid powertrain; optimization strategy; computational efficiency; energy management;
fuel economy

1. Introduction

Hybrid electrified powertrains represent a key technology for the automotive indus-
try’s transition toward decarbonization. The overall efficiency of this kind of powertrain
is higher than that of traditional vehicles by integrating electrical motors and different
energy storage systems (ESS) such as lithium-ion batteries or supercapacitors [1,2]. The
coordination of the energy distribution among these powertrain components is a critical
aspect of the control problem of HEVs because of their complex architectures. Proper
energy management strategies (EMSs) are then mandatory to take advantage of these
powertrains while respecting the safe working condition of each component [3].

A significant number of EMSs are proposed in the current literature. Zhang et al. [4]
classify them in two main headlines: offline EMS and online EMS, represented as optimization-
based EMSs; predictive EMSs; and learning-based EMSs. Offline EMSs can in turn be
divided into global optimization-based EMSs and rule-based EMSs. Energy management
by rule-based strategy mainly depends on local constraints and logical rules, usually
determined based on the battery state of charge (SoC), driver power demand, or vehicle
velocity. They are typically used in real-time applications thanks to their low computational
effort [5,6]. Ding proposed a hybrid EMS using a rule-based control strategy and a genetic
algorithm-based optimization to overcome the battery limitation [7]. Compared to the
simple rule-based approach, the hybrid one achieved a fuel economy increase of 14% while
preserving the simplicity of implementation.
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Global optimization-based methods seek global optimal solutions since they need
prior knowledge of the driving cycle. For this reason, they cannot directly be employed
in real-time problems, and they are typically used as a benchmark tool for other EMSs [8].
Dynamic programming (DP) and Pontryagin minimum principle (PMP) are two of the
most common offline EMSs. In DP, the optimal process is formulated to find the best cost
function from an initial state to a final one [9,10]. It suffers from high complexity and high
computational effort. For example, Polverino et al. [11] coupled DP and receding horizon
approaches to overcome the DP issue of prior knowledge of the entire driving mission.
Results showed a maximum drift from optimal consumption of less than 10% compared to
the full horizon prediction. PMP is an analytical optimization method that transforms a
global optimization problem into an instantaneous Hamiltonian optimization problem. It
can achieve near-optimal results compared to DP, but it requires co-state estimation [12–15].

The equivalent consumption minimization strategy (ECMS) is the most known online
EMS, and it can be considered a PMP simplification. It is based on the idea that the power
is distributed by minimizing the instantaneous equivalent fuel consumption at each instant
by converting the electricity consumption into the equivalent fuel consumption [16–18].
The weight of the electricity cost is represented by the equivalence factor (EF) that converts
the electric power to an equivalent consumed fuel [19,20]. Wang et al. combined the ECMS
with a fuzzy logic controller to adjust the equivalence factor based on the deviation between
a reference SoC and the actual SoC of the battery [21]. Results showed that under a real
driving cycle, the proposed strategy presented stronger robustness in the SoC sustainability
compared to a rule-based EMS and an SoC-based adaptive-ECMS. Fuel consumption was
improved up to 5.9%.

EMSs are strictly related to battery SoC management strategies. They are classified
according to how the SoC varies with time. Charge-sustaining (CS) strategies are typical of
hybrid electric vehicles, aiming to keep the SoC stable around a predefined target because
of the lack of the possibility to recharge the battery from the grid. Plug-in hybrid electric
vehicles can achieve a long driving distance than traditional fuel vehicles and non-tail
gas emissions when they drive in pure electric mode. Different battery management
strategies are needed to take advantage of these characteristics of PHEVs. Thanks to their
simplicity, charge-depleting/charge-sustaining (CD-CS) strategies are widely implemented
in heuristic hybrid control modules of PHEV [22,23]. They consist of a logic that first
discharges the battery until a predefined value of battery SoC and then sustains it around
this level. The charge-blended (CB) approach is similar to the CS one, but the desired SoC
trajectory decreases almost linearly with the driven distance [24]. CB strategies well fit
with PHEVs that can start the driving mission with a high SoC and aim to complete the
mission with a lower one. In addition, in CB mode, the internal combustion engine (ICE)
operates longer in its most efficient region, resulting in higher fuel economy [25]. In the
current literature, various methods have been presented to realize adaptive CB control
strategies [26,27]. Xie et al. [28] developed a data-driven ECMS for PHEVs. The EF was
evaluated by an artificial neural network trained with a real-world speed profile. The
results revealed that the proposed A-ECMS shows similar fuel consumption compared to
DP and PMP and a reduced energy total cost compared to a simple CD-CS strategy for
each tested case. However, computational time is more than 10 times increased compared
to the rule-based strategy. In [29], a real-time blended energy management strategy for
PHEVs is developed. It is based on the identification of real-time driving conditions by
a K-means clustering algorithm. Simulation results showed that the fuel economy of the
proposed strategy is improved up to 14.8% compared to a CD-CS strategy with a slightly
higher computational time, highlighting the feasibility of real-time control.

In previous authors’ work [30,31], a simplified control strategy was proposed to reduce
the computational effort typical of an ECMS-based strategy. Its basic idea is to alternatively
utilize the thermal engine and the electric motor to satisfy the power demand (efficient
thermal electric skipping strategy (ETESS)). The choice between the power units, at each
time, depends on the comparison between the actual fuel consumption of the thermal
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engine that operates to fully satisfy the power request for driving and equivalent fuel
consumption related to pure electric driving. In [32], the authors extended the ETESS logic
to the management of a parallel PHEV by the introduction of an adaptive function (adaptive-
ETESS (A-ETESS)). ETESS was demonstrated to perform similarly to ECMS both for CS
and CB strategies but with a shorter than two orders of magnitude computational time.

In this work, the ETESS logic is further enhanced to improve the battery SoC manage-
ment in a parallel P3 PHEV equipped with a small-size gasoline engine. Firstly, the vehicle
architecture and the simulation model are presented. ETESS logic is then deeply discussed,
with a focus on the adaptive function. To have a proper comparison term, the same adaptive
function is implemented in the ECMS, realizing an adaptive-ECMS (A-ECMS). Results
of A-ETESS and A-ECMS have then been discussed to benchmark the proposed control
strategy in terms of fuel economy. In the end, A-ETESS and A-ECMS are executed on the
same micro-controller unit (MCU), STMicroelectronics board NUCLEO-H743ZI2, realizing
processor-in-the-loop (PIL) tests, to compare the computational effort of the two strategies,
while the vehicle model is simulated on a PC host.

2. Vehicle Model and Simulation Platform

In this paper, a parallel P3 plug-in hybrid electric vehicle is adopted as the simulation
model. Its powertrain is composed of a three-cylinder spark ignition engine (ICE), a manual
clutch (CLT), an automatic transmission (MT), an electric reversible machine (EM), a DC-
DC converter, a battery pack (BA), and an electric motor starter (STRT). The powertrain
is schematized in Figure 1, in which the continuous black lines represent the mechanical
connections, and the blue dotted lines represent the electrical ones. The vehicle’s main
characteristics are listed in Table 1.
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Figure 1. Powertrain schematic of tested PHEV.

Table 1. Main characteristics of the tested PHEV.

Plug-in Hybrid Electric Vehicle Features

Vehicle

Mass, kg 1100
Car Aero Drag, m2 2.46
Wheel Diameter, m 0.366
Axle Ratio, - 3.32

Internal Combustion Engine

Displacement, cm3 999
Max Power, kW 46
Max Torque, Nm 90

Electric Machine

Max Power, kW 60
Max Torque, Nm 207

Battery

Rated Capacity, Ah 6.8
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Table 1. Cont.

Plug-in Hybrid Electric Vehicle Features

Gearbox

Gear 1 Ratio, - 4.212
Gear 2 Ratio, - 2.637
Gear 3 Ratio, - 1.8
Gear 4 Ratio, - 1.386
Gear 5 Ratio, - 1
Gear 6 Ratio, - 0.772

The vehicle architecture allows its operation in three modes, namely pure electric
mode, pure thermal mode, and parallel mode, to satisfy the driver power demand. In pure
thermal and pure electric modes, the entire commanded power is provided, respectively, by
the thermal engine or by the electric machine; meanwhile, in parallel mode, it is provided
in a combined manner by both the engine and the motor.

The simulation model under investigation is implemented in the MATLAB/Simulink
environment as a backward dynamic model. The driver is modeled according to the typical
approach that involves the use of a PID controller. The fuel consumption of the thermal
engine and the motor/generator efficiency have been estimated by speed-load lookup
tables, here depicted in Figures 2 and 3, respectively. Concerning the battery module, it
calculates the state of charge of the battery pack, according to SoC-dependent internal
resistance and open-circuit voltage. The electrical starter is a series of excited DC motors. It
draws energy from the battery to provide the engine with the necessary power during its
starting phases. The starter motor torque is expressed by (Equation (1)):

TSTRT = i2a f · La f (1)

in which iaf and Laf represent the field and armature current and the field and armature
mutual inductance, respectively. The powertrain also includes a disk clutch to decouple
the engine from the driveline. The clutch model involves friction and dynamic models that
depend on the clutch lockup condition.
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Detailed control logic is therefore necessary for both the clutch and the motor starter,
and it will be discussed in the following section.

3. Control Strategies

In this section, principles of ECMS and ETESS, suitable for HEV operating in charge-
sustaining mode, are described. Then, the extension of these strategies for managing
the PHEV in charge-blended mode is reported. Note that in both ETESS and ECMS
implementation, an engine control module (ECM) and a transmission control module
(TCM) are adopted.

The engine is schematized as a finite-state machine represented in Figure 4. When the
ECM receives the engine activation command from the EMS, the motor starter delivers
the power needed to accelerate the engine up to its idle speed. In the second stage, a PI
controller adjusts the engine torque to match its speed with that of the driveline. Only at
this time, the clutch pedal pressure is commanded to avoid mechanical losses during the
coupling of the clutch disks. When the EMS does not require power to the thermal engine,
the clutch disengagement is commanded by the ECM.
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To simplify the control logic and lower the computational effort, the desired gear is
selected by the TCM from a vehicle speed-accelerator pedal position lookup table. During
the gear shifting, the TCM operates a clutch disengagement.



Energies 2022, 15, 7122 6 of 20

3.1. Equivalent Consumption Minimization Strategy

The ECMS is a well-assessed strategy to reduce the global optimization problem of
HEVs to an instantaneous minimization problem to be solved at each instant only using
arguments based on actual energy flow in the powertrain. The related cost function can be
expressed as follow:

J =
.

m f + s0
Pbatt
LHV

(2)

It consists of an equivalent fuel rate obtained by summing the actual fuel rate (
.

m f ), and
a contribution related to the electric power (LHV represents the fuel’s lower heating value
and Pbatt the net electrical power as seen at the battery terminals) through an equivalence
factor (s0). The equivalence factor represents the cost of the electric power drawn from the
battery and its value for the optimal problem strongly depends on the driving conditions
and vehicle characteristics. It is worth highlighting that the cost of electricity strongly
depends on the operating conditions of the powertrain and, in particular, on the battery
SoC, so, in charge-depleting mode, a proper adaptivity of the equivalence factor should
be assigned.

3.2. Efficient Thermal Electric Skipping Strategy

The ETESS strategy has been already investigated in previous authors’ works [31,32],
and it is here extended to improve the energy management on HEVs/PHEVs equipped
with a small-size engine. Its main principle is based on an alternative utilization of the
thermal engine and of the electric machine to satisfy the power demanded for traction.
Based on this consideration, three operating modes can be defined: pure thermal mode,
pure electric mode, and parallel mode. However, in this work, a fourth traction-charging
mode is also considered. The choice among the pure thermal mode, pure electric mode,
and the traction-charging mode depends, at each time, on the comparison between the
total equivalent fuel consumption of each mode. It is defined as the sum of the actual fuel
rate (

.
m f ,th) and an equivalent fuel rate (

.
m f ,el) related to the electric energy drawn from the

battery, as reported in the following:

.
mtot,eq =

.
m f ,th +

.
m f ,el (3)

Parallel mode is considered in the comparison only if the thermal engine is not able
to satisfy the entire power demand. The equivalent electric fuel rate concept is based on
the idea that the power provided by the electric motor is produced by the thermal engine
in an undefined time while working in its minimum brake-specific fuel consumption
BSFCmin. Aiming at considering the power losses along the driveline, the power demand is
hence adjusted through the efficiencies of all the driveline components. The ETESS logic is
represented in the flowchart reported in Figure 5, and the detailed description of each mode
and the analytical expressions for the evaluation of the total equivalent fuel consumption
are given below.

As schematized in Figure 6, in pure thermal mode the demanded power is entirely
provided by the engine. The red arrows in Figures 6–8 are representative of the energy
fluxes between each drivetrain component.
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The actual fuel rate of the thermal engine depends on its operating point, defined by
torque output and rotational speed:

.
m f ,th =

Pdem · BSFC
ηGBηdi f f

(4)

where Pdem is the commanded wheel power, and ηdiff and ηGB are, respectively, the effi-
ciencies of the differential and gearbox. Since all the power is provided by the engine, the
equivalent fuel rate of the electric powertrain section is null (Equation (5)).

.
m f ,el = 0 (5)

In parallel mode, the thermal engine operates at its maximum load point and the
electric motor delivers the lacking power to fulfill the demanded one (Figure 7).

The actual fuel rate and the equivalent one are defined as follows:

.
m f ,th =

Peng,max · BSFC
ηGBηdi f f

(6)

.
m f ,el = c0 ·

(Pdem − Peng,max · ηGBηdi f f ) · BSFCmin

ηdi f f ηEMηinvηbatt
(7)

where ηEM, ηbatt, ηinv, are, respectively, the efficiencies of the electric motor, battery, and
inverter. c0 is a tuning constant and represents the fuel-equivalent consumption of electric
driving. Peng,max is the maximum engine power.

Opposite to the pure thermal mode, in pure electric mode, the demanded power is
entirely provided by the motor (Figure 8).

In this mode, the actual fuel rate is null (Equation (8)) and the equivalent one is given
by Equation (9):

.
m f ,th = 0 (8)

.
m f ,el = c0 ·

Pdem · BSFCmin
ηdi f f ηEMηinvηbatt

(9)

The traction-charging mode is designed to enhance battery charging that would
otherwise be allowed only by regenerative braking. This could lead to a lower level of
SoC, especially during high-power demanding driving missions. Since the engine can
provide a relatively low maximum power (Table 1), the vehicle would often work in parallel
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mode with the risk of causing the battery to be completely drained. In traction-charging
mode, the thermal engine operates at its maximum load point and the electric machine
works as a generator, utilizing the excess power provided by the engine to recharge the
battery (Figure 9). The traction-charging mode is allowable only if the power demanded
for traction is less than the maximum engine power (properly scaled by the drivetrain
component efficiencies).
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Expressions for the evaluation of the actual fuel rate and the equivalent fuel rate in
traction-charging mode (

.
m f ,chrg) are reported in the following:

.
m f ,th =

Peng,max · BSFC
ηGBηdi f f

(10)

.
m f ,el = c0 · (Pdem − Peng,max · ηGBηdi f f ) · BSFCmin · (ηGBηEMηinvηbatt) (11)

Based on the above considerations, for pure thermal mode, parallel mode, and traction-
charging mode, if the engine should be activated by the motor starter, the actual fuel rate is
incremented by an equivalent activation fuel rate (

.
m f ,th,ON) defined as follows:

.
m f ,th,ON = c0 ·

Pstrt · BSFCmin
ηstrtηbattηinv2

(12)

.
m f ,th =

Peng · BSFC
ηGBηdi f f

+
.

m f ,th,ON (13)

where Pstrt is the motor starter power, Peng is the engine power, and ηinv2 is the efficiency of
the starter DC-DC converter.

It is relevant to highlight that, in the control logic, a simplified approach is utilized
to describe the clutch efficiency. It is assumed that the clutch engagement and disengage-
ment maneuvers are instantaneous and characterized by a unitary efficiency, although in
the physical model of the drivetrain such processes are modeled in more detail. ETESS
advantage consists of reduced computational effort.

3.3. Adaptive Strategies

In order to realize a CB strategy, an adaptive variant of ECMS and ETESS is proposed
in this work. To this aim, a suitable target state of charge, labeled as SoC*, is assumed to
linearly decreases with the driven distance [24].

SoC∗(t) =
SoCini − SoC f in

Lm
· (Lm − x(t)) + SoC f in (14)

where SoCini and SoCfin are, respectively, the SoC of the battery at the start and the end of
the driving mission, x(t) is vehicle position at time instant t, and Lm is the total distance
to be covered. Equation (14) highlights that the SoC target can be evaluated just through
the a priori knowledge of the initial SoC (SoCini) before starting the driving, the desired
SoC at the end of the mission (SoCfin), and the overall distance to be covered by the vehicle.
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This information could be provided by a map service provider in real applications on
the vehicle.

The ETESS presented in Section 3.2 is extended to an adaptive CB strategy through
the adaption of the tuning constant c0. This extension is based on the variability of battery
properties with the SoC, as already explained in Section 3.1. For each of the operating
modes, defined in Section 3.2, the equivalent fuel consumption (Equations (5)–(11)) and the
total equivalent fuel consumption are reformulated as:

.
m f ,el = kpen ·

.
m f ,el (15)

.
mtot,eq =

.
m f ,th +

.
m f ,el (16)

where the penalization factor kpen is included. During the driving mission two scenarios
are possible:

• The actual SoC is higher than the reference SoC*. Pure electric driving must be
promoted by lowering the cost related to it.

• The actual SoC is lower than the reference SoC*. Pure electric driving must be penal-
ized by raising the cost associated with it.

The term kpen is differentiated for these two scenarios. For this reason, two different
functions are built based on the difference between the actual SoC and the reference value
and the normalized distance to travel (∆x = (Lm − x)/Lm). Then, logarithmic functions are
selected to stabilize the control strategy, assuming that the correction of the adaptive cost
raises with the traveled distance and with the SoC error. To achieve faster model running,
the two functions are implemented in the form of a lookup table. Their values are depicted
in Figure 10.
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Aiming at achieving consistent comparisons, an adaptive term is introduced in the
ECMS, leading to the following expression:

J =
.

m f + s0 · kpen ·
Pbatt
LHV

(17)

The optimal values of parameters c0 and s0 are identified in preliminary tests on
4 driving cycles, namely WLTC, US06, Artemis Highway, and a Real Driving Cycle. To
this aim, an automatic and iterative procedure implemented, which aims at minimizing
the time-integral difference between actual SoC and its target SoC*. In each iteration, the
values of c0 and s0 are kept constant, and they are automatically updated at the beginning
of each driving cycle based on a gradient method. This procedure is repeated until the
integrated SoC error attains the minimum level. In these analyses, according to typical
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plug-in hybrid operations, the parameters SoCiniand SoCfin are set equal to 80% and 30% to
evaluate the SoC* function as expressed in (Equation (14)).

Exemplary results of this tuning procedure are depicted in Figure 11. This represents
the SoC tendencies along the WLTC for the selected (1.18 in black), and discarded values of
c0 (1.24 in red and 1.12 in blue). The figure highlights that the optimal value of c0 leads to a
better agreement of the actual SoC with the target SoC* if compared to the other considered
values of c0.
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Figure 11. Parametric analysis of c0 on SoC evolution along WLTC; comparison with SoC*.

The identified optimal values of c0 and s0 for the considered preliminary tests show
a certain degree of correlation with the traveled distance, as reported in Figure 12. Two
fitting functions (dashed lines in Figure 12), are identified to select an appropriate value of
c0 or s0 whatever is the driving cycle, only by the knowledge of the overall distance to be
covered. Those functions are used in the results presented in the following.
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4. Test Cases

A set of 8 driving cycles, listed in Table 2, are selected for the comparison of A-
ETESS and A-ECMS, with the aim of exploring their behavior under various scenarios,
highly different in terms of maximum and mean speeds and accelerations, and distance to
be covered.

Table 2. Tested driving cycle.

TC Cycle Lm Vmean amax Vmax

Units km km/h m/s2 km/h

1 WLTC 23.00 46.5 1.75 131.3
2 FTP75 17.77 25.9 1.48 91.2
3 LA92 15.80 39.6 3.08 108.1
4 US06 12.80 77.9 3.755 129.2
5 ARTEMIS HIGHWAY 28.74 96.9 1.92 131.8
6 ARTEMIS RURAL 17.27 57.5 2.36 111.5
7 RDE1 93.94 50.5 3.33 126.0
8 RDE2 78.85 50.7 5.04 128.8
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To strengthen the validity of the comparisons, two real driving emission (RDE)-
compliant cycles, whose data have been collected from a GPS, are considered (Cycles
7 and 8 in Table 2, respectively).

5. Fuel Consumption Correction Related to Battery Discharge

In order to make a proper comparison between the two analyzed EMSs, “total con-
sumed fuel” is selected as the assessment parameter to compare the energy consumption
for the different test cases. In fact, two different energy sources are consumed during
the driving mission, namely the fuel and the electrical energy stored in the battery. The
overall battery discharge at the end of the driving cycle is then converted into an equivalent
amount of fuel based on the hypothesis that the energy taken from the battery (∆Ebatt) has
been produced by the engine operating at its average efficiency point (η) for the considered
driving mission. The additional equivalent consumed fuel is expressed as:

∆meq =
∆Ebatt

LHV · η
(18)

The total fuel consumed (mtot) during the driving mission is then expressed as:

mtot = mICE + ∆meq (19)

Equation (18) highlights that the engine should work with the highest possible average
efficiency to minimize ∆meq.

6. Results

Numerical analyses are performed for all the test cases listed in Table 2. However, for
sake of shortness the results for Test Cases 1, 2, and 8 (representative of a high-speed cycle,
low-medium speed cycles, and RDE-compliant cycles) are discussed in detail in this section.
According to preliminary analyses, the initial SoC is set equal to 80%, and the parameters
SoCiniand SoCfinof target function SoC* are set equal to 80% and 30%, respectively.

Concerning Test Case 1, both A-ECMS and A-ETESS show to follow the SoC target
profile and almost reach the desired SoC at the end of the mission (Figure 13b). The adaptive
factor properly mirrors the error between the instantaneous SoC and the related target
profile (Figure 13c).

By considering the portion of the cycle between 1400 and 1800 s, namely the high-
speed one, both strategies activate the EM to support the ICE, which delivers its maximum
torque to fulfill the power demanded at the wheels. This is also highlighted by the similar
SoC trends for A-ETES and A-ECMS Figure 13b. A-ETESS sometimes commands battery
recharges through ICE. In those phases, the ICE works at high load for a short time. Battery
recharge phases of A-ECMS are longer and with a lower power delivered by the ICE thanks
to the possibility to modulate the power split. Globally, the strategies behave in a very
similar way, which is evidenced also by analogous levels of accumulated consumed fuel
(Figure 13f).

Detailed outcomes for the FTP75 cycle (Test Case 2 of Table 2) are depicted in Figure 14.
The adaptive term is often next to the unit (Figure 14c), and the trends of the SoC are quite
close to the target (Figure 14b). If A-ETESS and A-ECMS similarly manage the EM, some
differences arise in the ICE utilization, as highlighted in Figure 14d,e, respectively. The
final consumed fuels are similar, but the A-ETESS involves a greater battery discharge at
the cycle end than A-ECMS, leading to a slightly worse fuel economy. The same differences
in the battery recharge management between A-ECMS and A-ETESS discussed for WLTC
are confirmed in the FTP75 cycle.
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Figure 13. WLTC, (a) target speed. ETESS/ECMS comparisons of battery SoC (b), kpen (c), EM power
(d), ICE power (e), and cumulated consumed fuel (f).

In Figure 15, the instantaneous trends of SoC (Figure 15b) and the adaptive term
(Figure 15c) along the RDE2-compliant cycle are represented (Test Case 8 of Figure 15).
Furthermore, the assessments of ICE and EM powers and consumed fuel are depicted
in Figure 15d–f, respectively. By comparing the SoC and EM power trends for the two
strategies, subtle differences arise in electrical energy usage because of the possibility of
A-ECMS exploring an intermediate power split. During the majority of the cycle, the
strategies chose to drive the vehicle in the same mode. In the last portion of the cycle,
between about 4400 and 5400 s, both strategies command the ICE to operate at its maximum
torque working point, also actuating a certain battery recharge. These similar management
lead to similar final values for the cumulated fuel consumed.

In the bar chart of Figure 16, the total fuel consumed per kilometer of the two strategies
is reported to make a global synthetic comparison. Over each couple of bars is shown the
percentage difference, evaluated as:

∆mtot =
mA−ECMS

tot + mA−ETESS
tot

mA−ECMS
tot

· 100 (20)
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Figure 14. FTP75, (a) target speed. ETESS/ECMS comparisons of battery SoC (b), kpen (c), EM power
(d), ICE power (e), and cumulated consumed fuel (f).

As can be observed, the average total fuel consumed difference between A-ETESS
and A-ECMS is below 2.4%. Greater differences emerge only for Test Case 2, for the issues
related to the management of battery recharge. Concerning vehicle drivability, there are
no relevant differences between the two strategies, as highlighted by the maximum and
averaged values of vehicle acceleration derivatives reported in Table 3.

Comparing the number of engine ON per minute, reported in Table 3, the differences
between the A-ETESS and A-ECMS are not significant. A-ETESS, due to its intrinsic concept,
more frequently needs engine switch-on, but the occurrences of such events are in most
cases slightly higher than A-ECMS ones. A-ETESS performs even better than A-ECMS
for Case 5. Further efforts may be devoted to reducing the number of engine switch-on
in a real on-vehicle application, with the aim to optimize the thermal management and
effectiveness of after-treatment devices of the ICE.
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Figure 16. Comparison between A-ECMS and A-ETESS of kilometric consumed fuel and percent
difference for the test cases of Table 2.



Energies 2022, 15, 7122 16 of 20

Table 3. Number of engine ON per minute and maximum and mean of vehicle acceleration derivative
for the test cases of Table 2.

TC Strategy Engine ON/min max( da
dt ), m

s3 mean(| da
dt |), m

s3

1
A-ETESS 1.500 1.775 0.135
A-ECMS 1.333 1.334 0.131

2
A-ETESS 1.189 1.384 0.120
A-ECMS 0.994 1.384 0.118

3
A-ETESS 1.923 2.863 0.284
A-ECMS 1.714 2.723 0.279

4
A-ETESS 1.100 2.090 0.319
A-ECMS 1.100 2.092 0.313

5
A-ETESS 0.899 2.325 0.220
A-ECMS 0.787 2.326 0.215

6
A-ETESS 2.052 3.009 0.263
A-ECMS 1.941 3.014 0.264

7
A-ETESS 1.560 2.659 0.223
A-ECMS 1.470 2.853 0.223

8
A-ETESS 1.597 2.447 0.218
A-ECMS 1.511 2.563 0.218

7. PIL Test

Further analyses are performed to estimate the computational effort and execution
time of A-ETESS and A-ECMS on a real board. To this aim, processor-in-the-loop tests are
executed. Hence, a C-Code has been generated through the adoption of a Simulink Coder
R2022a (MathWorks, Inc., Natick, MA, USA), then loaded on a high-performance board
for optimized control, the so-called NUCLEO-H743 (STMicroelectronics, Plan-les-Ouates,
Geneva, Switzerland) [33]. The latter is equipped with an ARM®Cortex®-M7 (STMi-
croelectronics, Plan-les-Ouates, Geneva, Switzerland) running up to 480 MHz, 424 Core-
Mark/1027 DMIPS (STMicroelectronics, Plan-les-Ouates, Geneva, Switzerland) executing
from flash memory. The GNU Tools for ARM Embedded Processors are set for the build-
ing process.

While the powertrain control strategy runs on the NUCLEO board, the vehicle and
powertrain physical models are executed on a PC host. Hence, the here-adopted PIL testing
procedure is based on their asynchronous serial communication. Once the simulation in
PIL mode ends, Simulink generates the code execution profiling report. The outcomes are
similar for all the test cases in Table 2, so, for sake of brevity, in Table 4, the only results
reported are related to WLTC. The latter shows that A-ETESS is two orders of magnitude
faster than A-ECMS, with a maximum CPU utilization of 0.022% in the place of 18.18%.

Table 4. PIL testing results for WLTC.

Task A-ETESS A-ECMS Difference, %

Maximum CPU Utilization, % 0.022 18.18 −99.87
Average CPU Utilization, % 0.008 17.8 −99.96

Maximum Execution Time, ms 0.045 1.817 −97.52
Average Execution Time, ms 0.016 1.780 −99.10

For both strategies, the average execution time turns out to be lower than the typical
cycle time of a can message for an updated engine torque request (10 ms), but the A-ETESS
demonstrated a reduced computational effort confirming the possibility to run multiple
control strategies on the same microcontroller, optimizing its utilization.
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8. Conclusions

This paper describes the enhancement of a simplified control strategy, named A-ETESS,
for plug-in hybrid electric vehicles equipped with a downsized ICE. The simulation study
is based on a vehicle model built in the MATLAB/Simulink environment. The proposed
A-ETESS is a charge-blended battery control strategy that provides for a linearly decreasing
target SoC with the driven distance. The fundamental idea of the ETESS to alternatively
utilize the thermal engine and the electric motor to provide the power requested to drive the
vehicle is here improved by considering an additional charging-traction mode to enhance
battery recharging and SoC management. The ETESS is here extended to an adaptive EMS
through the implementation of an adaptive logarithmic-based function properly selected to
make the strategy stable and implemented in the form of a two-dimensional lookup table.
The same adaptive function is introduced in the ECMS to have a proper comparison with
the proposed strategy in terms of fuel consumption and computational effort.

In the first stage, the two strategies are properly tuned to minimize the average
difference between actual SoC and target SoC for five driving cycles, namely US06, WLTC,
Artemis Highway, and an RDE cycle, through the selection of cycle-dependent tuning
parameters. Those are then correlated to the traveled distance by a fitting function to
generalize the approach whatever is the driving cycle to be covered. Simulation results
highlighted that the average total fuel consumption difference between A-ETESS and
A-ECMS is below 2.5%.

PIL tests are realized to compare the computational time of A-ETESS and A-ECMS
and to verify the possibility to implement the A-ETESS in a real-time vehicle application.
The EMSs are executed on the NUCLEO-H743, while the vehicle model is simulated on
a PC host. PIL results highlighted that A-ETESS can run two orders of magnitude faster
than A-ECMS. Since the A-ETESS execution time is lower than the typical cycle time of a
CAN message, real-time control of the engine and motor torque requests appear feasible
on-vehicle.

Future developments will provide the improvement of the A-ETESS, taking advan-
tage of additional information available in connected vehicles. Further, neural networks,
properly trained with data provided by vehicle connectivity or by optimal strategies such
as DP or PMP, will be also considered to cooperate with the proposed strategy to improve
its performance in terms of adaptivity and fuel economy.
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Abbreviations

Notations
m Mass
∆Ebatt Battery energy variation
.

m f Fuel mass rate
s0 Equivalence factor
kpen Adaptive term
Pbatt Battery power
T Torque
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J Cost function
LHV Lower heating value
c0 Weight of electricity cost
iaf FIELD and armature current
Laf FIELD and armature mutual inductance
Acronyms
A-ECMS Adaptive-ECMS
A-ETESS Adaptive-ETESS
BA Battery pack
BSFC Brake-specific fuel consumption
CB Charge blended
CD Charge depleting
CS Charge sustaining
DP Dynamic programming
ECMS Equivalent consumption minimization strategy
EF Equivalence factor
EM Electric motor
EM Electric machine
EMS Energy management strategy
ESS Energy storage system
ETESS Efficient thermal/electric skipping strategy
FC Fuel consumption
HEV Hybrid electric vehicle
HIL Hardware in the loop
ICE Internal combustion engine
LHV Lower heating value
MCU Microcontroller unit
MT Manual transmission
PHEV Plug-in HEV
PIL Processor in the loop
PMP Pontryagin minimum principle
RDE Real driving emission
SoC State of charge
STRT Starter
Subscript
batt Battery
dem Demanded
diff Differential
eq Equivalent
f Fuel
fin Final
GB Gearbox
ini Initial
inv Inverter
m Mission
el Electric
th Thermal
STRT Starter
eng Engine
max Maximum
EM Electric machine
min Minimum
tot Total
Superscript
. Time derivative
* Target
Greeks
η Efficiency
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