25 research outputs found

    Abstractions of linear dynamic networks for input selection in local module identification

    Full text link
    In abstractions of linear dynamic networks, selected node signals are removed from the network, while keeping the remaining node signals invariant. The topology and link dynamics, or modules, of an abstracted network will generally be changed compared to the original network. Abstractions of dynamic networks can be used to select an appropriate set of node signals that are to be measured, on the basis of which a particular local module can be estimated. A method is introduced for network abstraction that generalizes previously introduced algorithms, as e.g. immersion and the method of indirect inputs. For this abstraction method it is shown under which conditions on the selected signals a particular module will remain invariant. This leads to sets of conditions on selected measured node variables that allow identification of the target module.Comment: 17 pages, 7 figures. Paper to appear in Automatica, Vol. 117, July 202

    Freely Available, Fully Automated AI-Based Analysis of Primary Tumour and Metastases of Prostate Cancer in Whole-Body [F-18]-PSMA-1007 PET-CT

    Get PDF
    Here, we aimed to develop and validate a fully automated artificial intelligence (AI)-based method for the detection and quantification of suspected prostate tumour/local recurrence, lymph node metastases, and bone metastases from [F-18]PSMA-1007 positron emission tomography-computed tomography (PET-CT) images. Images from 660 patients were included. Segmentations by one expert reader were ground truth. A convolutional neural network (CNN) was developed and trained on a training set, and the performance was tested on a separate test set of 120 patients. The AI method was compared with manual segmentations performed by several nuclear medicine physicians. Assessment of tumour burden (total lesion volume (TLV) and total lesion uptake (TLU)) was performed. The sensitivity of the AI method was, on average, 79% for detecting prostate tumour/recurrence, 79% for lymph node metastases, and 62% for bone metastases. On average, nuclear medicine physicians\u27 corresponding sensitivities were 78%, 78%, and 59%, respectively. The correlations of TLV and TLU between AI and nuclear medicine physicians were all statistically significant and ranged from R = 0.53 to R = 0.83. In conclusion, the development of an AI-based method for prostate cancer detection with sensitivity on par with nuclear medicine physicians was possible. The developed AI tool is freely available for researchers

    Identification and prediction in dynamic networks with unobservable nodes

    No full text
    The interest for system identification in dynamic networks has increased recently with a wide variety of applications. In many cases, it is intractable or undesirable to observe all nodes in a network and thus, to estimate the complete dynamics. If the complete dynamics is not desired, it might even be challenging to estimate a subset of the network if key nodes are unobservable due to correlation between the nodes. In this contribution, we will discuss an approach to treat this problem. The approach relies on additional measurements that are dependent on the unobservable nodes and thus indirectly contain information about them. These measurements are used to form an alternative indirect model that is only dependent on observed nodes. The purpose of estimating this indirect model can be either to recover information about modules in the original network or to make accurate predictions of variables in the network. Examples are provided for both recovery of the original modules and prediction of nodes

    On Indirect Input Measurements

    No full text
    A common issue with many system identification problems is that the true input to the system is unknown. In this paper, a framework, based on indirect input measurements, is proposed to solve the problem when the input is partially or fully unknown, and cannot be measured directly. The approach relies on measurements that indirectly contain information about the unknown input. The resulting indirect model formulation, with both direct- and indirect input measurements as inputs, can be used to estimate the desired model of the original system. Due to the similarities with closed-loop system identification, an iterative instrumental variable method is proposed to estimate the indirect model. To show the applicability of the proposed method, it is applied to data from an inverted pendulum experiment with good results

    Identification of systems with unknown inputs using indirect input measurements

    No full text
    A common issue with many system identification problems is that the true input to the system is unknown. This paper extends a previously presented indirect modelling framework that deals with identification of systems where the input is partially or fully unknown. In this framework, unknown inputs are eliminated by using additional measurements that directly or indirectly contain information about the unknown inputs. The resulting indirect predictor model is only dependent on known and measured signals and can be used to estimate the desired dynamics or properties. Since the input of the indirect model contains both known inputs and measurements that could all be correlated with the same disturbances as the output, estimation of the indirect model has similar challenges as a closed-loop estimation problem. In fact, due to the generality of the indirect modelling framework, it unifies a number of already existing system identification problems that are contained as special cases. For completeness, the paper is concluded with one method that can be used to estimate the indirect model as well as an experimental verification to show the applicability of the framework.Funding Agencies|Vinnova Industry Excellence Center LINK-SIC project [2007-02224]</p

    Träning för långdistans : De senaste rönen

    No full text
    Många tidskrifter skriver om optimala metoder för att öka sin prestationsförmåga, gå ner i vikt, eller helt enkelt se snyggare ut. Följande artikel är ett försök att ge dig verktygen för att själv kunna optimera din träning. Physiology of Adventure Racin

    Design genom storytelling

    No full text
    Vår övertygelse är att en av de viktigaste budbärarna för ett företags identitet är produkterna och att ett långsiktigt varumärkesbyggande sker genom att knyta emotionella band mellan konsumenterna och varumärket. Detta handlar främst om vad konsumenten upplever när produkterna används. Vår målsättning var att bättre kunna förstå helheten runt användarupplevelsen och branding och därigenom skapa bättre verktyg för detta i vår designprocess. Målet var att komma fram till slutsatser kring hur vi som designer kan angripa dessa frågor på ett kreativt sätt. En stor del av vårt arbete har behandlat området branding i förhållande till design, men vi har även berört vissa områden som psykologi, innovation samt kreativa arbetsprocesser.Årets examensarbete 2005, Idesignpriset.se. Frimurarordens stipendie 2005

    Mass estimation of a quadcopter using IMU data

    No full text
    In this paper, an approach to estimate the mass of a quadcopter using only inertial measurements and pilot commands is presented. For this purpose, a lateral dynamic model describing the relation between the roll rate and the lateral acceleration is formulated. Due to the quadcopter’s inherent instability, a controller is used to stabilize the system and the data is collected in closed loop. Under the effect of feedback and disturbances, the inertial measurements used as input and output are correlated with the disturbances, which complicates the parameter estimation. The parameters of the model are estimated using several methods. The simulation and experimental results show that the instrumental-variable method has the best potential to estimate the mass of the quadcopter in this setup.Funding agencies: European Unions Horizon research and innovation programme under the Marie Sklodowska-Curie grant [642153]MarineUA

    Least-Squares Phase Predistortion of a +30dBm Class-D Outphasing RF PA in 65nm CMOS

    No full text
    This paper presents a model-based phase-only predistortion method suitable for outphasing radio frequency (RF) power amplifiers (PA). The predistortion method is based on a model of the amplifier with a constant gain factor and phase rotation for each outphasing signal, and a predistorter with phase rotation only. Exploring the structure of the outphasing PA, the problem can be reformulated from a nonconvex problem into a convex least-squares problem, and the predistorter can be calculated analytically. The method has been evaluted for 5MHz Wideband Code-Division Multiple Access (WCDMA) and Long Term Evolution (LTE) uplink signals with Peak-to-Average Power Ratio (PAPR) of 3.5 dB and 6.2 dB, respectively, applied to a fully integrated Class-D outphasing RF PA in 65nm CMOS. At 1.95 GHz for a 5.5V supply voltage, the measured output power of the PA was +29.7dBm with a power-added efficiency (PAE) of 26.6 %. For the WCDMA signal with +26.0dBm of channel power, the measured Adjacent Channel Leakage Ratio (ACLR) at 5MHz and 10MHz offsets were -46.3 dBc and -55.6 dBc with predistortion, compared to -35.5 dBc and -48.1 dBc without predistortion. For the LTE signal with +23.3dBm of channel power, the measured ACLR at 5MHz offset was -43.5 dBc with predistortion, compared to -34.1 dBc without predistortion
    corecore