23 research outputs found
Revisiting OSIRIS-REx Touch-And-Go (TAG) Performance Given the Realities of Asteroid Bennu
The Origins, Spectral Interpretation, Resource Identification, and SecurityRegolith Explorer (OSIRIS-REx) mission is a NASA New Frontiers mission that launched in 2016 and rendezvoused with the near-Earth asteroid (101955) Bennu in late 2018. Upon arrival, the surface of Bennu was found to be much rockier than expected. The original Touch-and-Go (TAG) requirement for sample collection was to deliver the spacecraft to a site with a 25-meter radius; however, the largest hazard-free sites are no larger than 8 meters in radius. To accommodate the dearth of safe sample collection sites, the project reevaluated all aspects of flight system performance pertaining to TAG in order to account for the demonstrated performance of the spacecraft and navigation prediction accuracies. More-over, the project has base lined on board natural feature tracking instead of lidar for providing the on board navigation state update during the TAG sequence. This paper summarizes the improvements in error source estimation, enhancements in on board trajectory correction, and results of recent Monte Carlo simulation to en-able sample collection with the given constraints. TAG delivery and on board navigation performance are presented for the final four candidate TAG sites
Toward improving practices for submission of diagnostic tissue blocks for National Cancer Institute clinical trials
OBJECTIVES: The National Cancer Institute (NCI) National Clinical Trials Network performs phase II and III clinical trials, which increasingly rely on the submission of diagnostic formalin-fixed, paraffin-embedded tissue blocks for biomarker assessment. Simultaneously, advances in precision oncology require that clinical centers maintain diagnostic specimens for ancillary, standard-of-care diagnostics. This has caused tissue blocks to become a limited resource for advancing the NCI clinical trial enterprise and the practice of modern molecular pathology.
METHODS: The NCI convened a 1-day workshop of multidisciplined experts to discuss barriers and strategic solutions to facilitate diagnostic block submission for clinical trial science, from the perspective of patient advocates, legal experts, pathologists, and clinical oncologists.
RESULTS: The expert views and opinions were carefully noted and reported.
CONCLUSIONS: Recommendations were proposed to reduce institutional barriers and to assist organizations in developing clear policies regarding diagnostic block submission for clinical trials
The Sundowner Winds Experiment (SWEX) pilot study: Understanding downslope windstorms in the Santa Ynez Mountains, Santa Barbara, California
Sundowner winds are downslope gusty winds often observed on the southern slopes of the Santa Ynez Mountains (SYM) in coastal Santa Barbara (SB), California. They typically peak near sunset and exhibit characteristics of downslope windstorms through the evening. They are SB\u27s most critical fire weather in all seasons and represent a major hazard for aviation. The Sundowner Winds Experiment Pilot Study was designed to evaluate vertical profiles of winds, temperature, humidity, and stability leeward of the SYM during a Sundowner event. This was accomplished by launching 3-hourly radiosondes during a significant Sundowner event on 28-29 April 2018. This study showed that winds in the lee of the SYM exhibit complex spatial and temporal patterns. Vertical profiles showed a transition from humid onshore winds from morning to mid-afternoon to very pronounced offshore winds during the evening after sunset. These winds accompanied mountain waves and a northerly nocturnal lee jet with variable temporal behavior. Around sunset, the jet was characterized by strong wind speeds enhanced by mountain-wave breaking. Winds weakened considerably at 2300 PDT 29 April but enhanced dramatically at 0200 PDT 29 April at much lower elevations. These transitions were accompanied by changes in stability profiles and in the Richardson number. A simulation with the Weather Research and Forecasting (WRF) Model at 1-km grid spacing was examined to evaluate the skill of the model in capturing the observed winds and stability profiles and to assess mesoscale processes associated with this event. These results advanced understanding on Sundowner\u27s spatiotemporal characteristics and driving mechanisms
Educational testing of an auditory display regarding seasonal variation of martian polar ice caps
Proceedings of the 9th International Conference on Auditory Display (ICAD), Boston, MA, July 7-9, 2003.During Fall 2002, planetary scientists and astronomy education researchers from the University of Arizona and the National Optical Astronomy Observatory collaborated with composer Marty Quinn of Design Rhythmics Sonification Research Lab in New Hampshire to create both a visual and auditory display of recent gamma ray data from Mars. This product will be used both to highlight the value of data from the current Mars 2001 Odyssey mission and to serve as a testbed for research into the use and effectiveness of auditory displays in science education. This paper provides background on the Mars data presented, an overview of the animation/sonification product, preliminary results from educational testing of the product, and future research plans. The authors hope to present both the sonification and preliminary results of educational research at the ICAD conference this summer
OSIRIS-REx Encounters Bennu: Initial Assessment from the Approach Phase
The OSIRIS-REx spacecraft launched on September 8, 2016, on a seven-year journey to return samples from asteroid (101955) Bennu. This presentation summarizes the scientific results from the Approach and Preliminary Survey phases. Bennu observations are set to begin on August 17, 2018,when the asteroid is bright enough for detection by the PolyCam. PolyCam and MapCam collect data to survey the asteroid environment for any hazards and characterize the asteroid point-source photometric properties. Resolved images acquired during final approach, starting in late October 2018, allow the creation of a shape model using stereophotoclinometry (SPC), needed by both the navigation team and science planners. The OVIRS and OTES spectrometers characterize the point- source spectral properties over a full rotation period, providing a first look at any features and thermophysical properties. TAGSAM is released from the launch container and deployed into the sampling configuration then returned to the stow position.Preliminary Survey follows the Approach Phase in early December 2018. This phase consists of a series of hyperbolic trajectories that cross over the North and South poles and the equator of Bennu at a close-approach distance of 7 km. Images from these Preliminary Survey passes provide data to complete the 75-cm resolution SPC global shape model and solve for the rotation state. Once the shape model is complete, the asteroid coordinate system is defined for co-registration of all data products. These higher-resolution images also constrain the photometric properties and allow for an initial assessment of the geology. In Preliminary Survey the team also obtains the first OLA data, providing a measure of the surface topography. OVIRS and OTES collect data as "ride-along" instruments, with the spacecraft pointing driven by imaging constraints. These data provide a first look at the spectral variation across the surface of Bennu. Radio science measurements, combined with altimetry and imagery, determine Bennu's mass, a prerequisite to placing the spacecraft into orbit in late December 2018. Together, data from the Approach and Preliminary Survey phases set the stage for the extensive mapping planned for 2019. These dates are the baseline plan. Any contingency or unexpected discovery may change this mission profile
Recommended from our members
The Sundowner Winds Experiment (SWEX) Pilot Study: Understanding Downslope Windstorms in the Santa Ynez Mountains, Santa Barbara, California
AbstractSundowner winds are downslope gusty winds often observed on the southern slopes of the Santa Ynez Mountains (SYM) in coastal Santa Barbara (SB), California. They typically peak near sunset and exhibit characteristics of downslope windstorms through the evening. They are SB’s most critical fire weather in all seasons and represent a major hazard for aviation. The Sundowner Winds Experiment Pilot Study was designed to evaluate vertical profiles of winds, temperature, humidity, and stability leeward of the SYM during a Sundowner event. This was accomplished by launching 3-hourly radiosondes during a significant Sundowner event on 28–29 April 2018. This study showed that winds in the lee of the SYM exhibit complex spatial and temporal patterns. Vertical profiles showed a transition from humid onshore winds from morning to midafternoon to very pronounced offshore winds during the evening after sunset. These winds accompanied mountain waves and a northerly nocturnal lee jet with variable temporal behavior. Around sunset, the jet was characterized by strong wind speeds enhanced by mountain-wave breaking. Winds weakened considerably at 2300 PDT 29 April but enhanced dramatically at 0200 PDT 29 April at much lower elevations. These transitions were accompanied by changes in stability profiles and in the Richardson number. A simulation with the Weather Research and Forecasting (WRF) Model at 1-km grid spacing was examined to evaluate the skill of the model in capturing the observed winds and stability profiles and to assess mesoscale processes associated with this event. These results advanced understanding on Sundowner’s spatiotemporal characteristics and driving mechanisms
Recommended from our members
The Sundowner Winds Experiment (SWEX) Pilot Study: Understanding Downslope Windstorms in the Santa Ynez Mountains, Santa Barbara, California
AbstractSundowner winds are downslope gusty winds often observed on the southern slopes of the Santa Ynez Mountains (SYM) in coastal Santa Barbara (SB), California. They typically peak near sunset and exhibit characteristics of downslope windstorms through the evening. They are SB’s most critical fire weather in all seasons and represent a major hazard for aviation. The Sundowner Winds Experiment Pilot Study was designed to evaluate vertical profiles of winds, temperature, humidity, and stability leeward of the SYM during a Sundowner event. This was accomplished by launching 3-hourly radiosondes during a significant Sundowner event on 28–29 April 2018. This study showed that winds in the lee of the SYM exhibit complex spatial and temporal patterns. Vertical profiles showed a transition from humid onshore winds from morning to midafternoon to very pronounced offshore winds during the evening after sunset. These winds accompanied mountain waves and a northerly nocturnal lee jet with variable temporal behavior. Around sunset, the jet was characterized by strong wind speeds enhanced by mountain-wave breaking. Winds weakened considerably at 2300 PDT 29 April but enhanced dramatically at 0200 PDT 29 April at much lower elevations. These transitions were accompanied by changes in stability profiles and in the Richardson number. A simulation with the Weather Research and Forecasting (WRF) Model at 1-km grid spacing was examined to evaluate the skill of the model in capturing the observed winds and stability profiles and to assess mesoscale processes associated with this event. These results advanced understanding on Sundowner’s spatiotemporal characteristics and driving mechanisms