115 research outputs found

    Policies and Practices of School Leaderships in Japan: A Case of Leadership Development Strategies in Akita

    Get PDF
    Reflecting the social and economic change, Japanese education has shifted to decentralization since the 1980s. With an increased autonomy and responsibility, the local government plays an important role to develop competent school leaders. This descriptive study employs case study approach to illustrate current status of leadership development at the local level in Japan. Through the analysis of current policies and practices, it lays out the strategies of leadership development in Akita prefecture. In addition, semi-structured interviews with 17 education leaders were conducted in 2014 and 2015 to explore their perceptions on the leadership development. The study found that the leadership development in Akita is implemented combining formal and informal training activities. While a comprehensive professional development system is implemented strategically, informal learning of competency is commonly exercised. This dual approach enables school leaders to develop their leadership skills and knowledge

    Synthesis of diblock copolymers with cellulose derivatives 4. Self-assembled nanoparticles of amphiphilic cellulose derivatives carrying a single pyrene group at the reducing-end

    Get PDF
    Self-assembled cellulose-pyrene nanoparticles were prepared from amphiphilic cellulose derivatives carrying a single pyrene group at the reducing-end, N-(1-pyrenebutyloyl)-β-cellulosylamine (CELL13Py and CELL30Py, the number average degrees of polymerization (DPn) of 13 and 30, respectively) and N-(15-(1-pyrenebutyloylamino)-pentadecanoyl)-β-cellulosylamine (CELL13C15Py and CELL30C15Py, DPn of 13 and 30, respectively). Transmission electron microscopy (TEM) observation revealed that CELL13C15Py and CELL30C15Py formed self-assembled nanoparticles with the average diameters of 108.8 and 40.0 nm, respectively. The average radius of CELL30C15Py nanoparticles (20.0 nm) agreed well with the molecular length of its cellulose chain (19.2 nm). CELL30C15Py nanoparticles were expected to have monolayered structure, consisting of cellulose shell with radial orientation and hydrophobic core of 15-(1-pyrenebutyloylamino)-pentadecanoyl groups. The fluorescent spectrum of CELL30C15Py nanoparticles showed an excimer emission due to dimerized pyrene groups, indicating that the pyrene groups at the reducing-end of cellulose are associating in the particles. The balance of hydrophilic and hydrophobic parts of the cellulose derivatives controlled their self-assembled nanostructures. X-ray diffraction measurements revealed that radially oriented cellulose chains of CELL30C15Py nanoparticles were mostly amorphous, and at the same time exhibited weak reflection pattern of cellulose II, which is believed to have anti-parallel orientation

    In Vitro Synthesis of Branchless Linear (1 → 6)-α-d-Glucan by Glucosyltransferase K: Mechanical and Swelling Properties of Its Hydrogels Crosslinked with Diglycidyl Ethers

    Get PDF
    A hydrogel was prepared from a polysaccharide, enzymatically synthesized through a one-pot reaction in aqueous solution, and its properties as a functional material were evaluated. Enzymatic synthesis using glucosyltransferase K obtained from Streptococcus salivarius ATCC 25975 was performed with sucrose as a substrate. The synthetic product was unbranched linear (1 → 6)-α-d-glucan with a high molecular weight, Mw: 1.0–3.0 × 105. The synthesized (1 → 6)-α-d-glucan was insoluble in water and crystallized in a monoclinic unit cell, which is consistent with the hydrated form of dextran. Transparent and highly swellable (1 → 6)-α-d-glucan hydrogels were obtained by crosslinking with diglycidyl ethers. The hydrogels showed no syneresis and no volume change during compression, resulting in the retention of shape under repeated compression. The elastic moduli of these hydrogels (<60 kPa) are smaller than those of other polysaccharide-based hydrogels having the same solid contents. The oven-dried gels could be restored to the hydrogel state with the original transparency and a recovery ratio greater than 98%. The mechanism of water diffusion into the hydrogel was investigated using the kinetic equation of Peppas. The properties of the hydrogel are impressive relative to those of other polysaccharide-based hydrogels, suggesting its potential as a functional biomaterial

    A reduced brain and liver FDG uptake

    Get PDF
    Purpose : To investigate whether or not the physiological brain and liver FDG uptake are decreased in patients with highly accelerated glycolysis lesions. Methods : We retrospectively analyzed 51 patients with malignant lymphoma. We compared the FDG uptake in the brain and liver of the patients with that in a control group. In 24 patients with a complete response (CR) or partial response (PR) to treatment, we compared the brain and liver uptake before and after treatment. Results : The maximum standardized uptake value (SUVmax) and total glycolytic volume (TGV) of the brain as well as the SUVmax and mean standardized uptake value (SUVmean) of the liver in malignant lymphoma patients were 13.1 ± 2.3, 7386.3 ± 1918.4, 3.2 ± 0.5, and 2.3 ± 0.4, respectively ; in the control group, these values were 14.9 ± 2.4, 8566.2 ± 1659.5, 3.4 ± 0.4, and 2.5 ± 0.3, respectively. The SUVmax and TGV of the brain and the SUVmean of the liver in malignant lymphoma patients were significantly lower than the control group. The SUVmax and TGV of the brain after treatment were significantly higher than before treatment. Both the SUVmax and SUVmean of liver after treatment were higher than before treatment, but not significant. Conclusion : A decreased physiological brain and liver FDG uptake is caused by highly accelerated lesion glycolysis

    Distinct Functions of the Primate Putamen Direct and Indirect Pathways in Adaptive Outcome-Based Action Selection

    Get PDF
    Cortico-basal ganglia circuits are critical regulators of reward-based decision making. Reinforcement learning models posit that action reward value is encoded by the firing activity of striatal medium spiny neurons (MSNs) and updated upon changing reinforcement contingencies by dopamine (DA) signaling to these neurons. However, it remains unclear how the anatomically distinct direct and indirect pathways through the basal ganglia are involved in updating action reward value under changing contingencies. MSNs of the direct pathway predominantly express DA D1 receptors and those of the indirect pathway predominantly D2 receptors, so we tested for distinct functions in behavioral adaptation by injecting D1 and D2 receptor antagonists into the putamen of two macaque monkeys performing a free choice task for probabilistic reward. In this task, monkeys turned a handle toward either a left or right target depending on an asymmetrically assigned probability of large reward. Reward probabilities of left and right targets changed after 30-150 trials, so the monkeys were required to learn the higher-value target choice based on action-outcome history. In the control condition, the monkeys showed stable selection of the higher-value target (that more likely to yield large reward) and kept choosing the higher-value target regardless of less frequent small reward outcomes. The monkeys also made flexible changes of selection away from the high-value target when two or three small reward outcomes occurred randomly in succession. DA D1 antagonist injection significantly increased the probability of the monkey switching to the alternate target in response to successive small reward outcomes. Conversely, D2 antagonist injection significantly decreased the switching probability. These results suggest distinct functions of D1 and D2 receptor-mediated signaling processes in action selection based on action-outcome history, with D1 receptor-mediated signaling promoting the stable choice of higher-value targets and D2 receptor-mediated signaling promoting a switch in action away from small reward outcomes. Therefore, direct and indirect pathways appear to have complementary functions in maintaining optimal goal-directed action selection and updating action value, which are dependent on D1 and D2 DA receptor signaling

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target
    corecore