581 research outputs found

    Charge transfer and weak bonding between molecular oxygen and graphene zigzag edges at low temperatures

    Full text link
    Electron paramagnetic resonance (EPR) study of air-physisorbed defective carbon nano-onions evidences in favor of microwave assisted formation of weakly-bound paramagnetic complexes comprising negatively-charged O2- ions and edge carbon atoms carrying pi-electronic spins. These complexes being located on the graphene edges are stable at low temperatures but irreversibly dissociate at temperatures above 50-60 K. These EPR findings are justified by density functional theory (DFT) calculations demonstrating transfer of an electron from the zigzag edge of graphene-like material to oxygen molecule physisorbed on the graphene sheet edge. This charge transfer causes changing the spin state of the adsorbed oxygen molecule from S = 1 to S = 1/2 one. DFT calculations show significant changes of adsorption energy of oxygen molecule and robustness of the charge transfer to variations of the graphene-like substrate morphology (flat and corrugated mono- and bi-layered graphene) as well as edges passivation. The presence of H- and COOH- terminated edge carbon sites with such corrugated substrate morphology allows formation of ZE-O2- paramagnetic complexes characterized by small (<50 meV) binding energies and also explains their irreversible dissociation as revealed by EPR.Comment: 28 pages, 8 figures, 2 tables, accepted in Carbon journa

    Arrival time distributions of electrons in air showers with primary energies above 10 (18)eV observed at 900m above sea level

    Get PDF
    Detection of air showers with primary energies above 10 to the 19th power eV with sufficient statistics is extremely important in an astrophysical aspect related to the Greisen cut off and the origin of such high energy cosmic rays. Recently, a method is proposed to observe such giant air showers by measuring the arrival time distributions of air-shower particles at large core distances with a mini array. Experiments to measure the arrival time distributions of muons were started in 1981 and those of electrons in early 1983 in the Akeno air-shower array (930 gcm cm squared atmospheric depth, 900m above sea level). During the time of observation, the detection area of the Akeno array was expanded from 1 sq km to sq km in 1982 and to 20 sq km in 1984. Now the arrival time distribution of electrons and muons can be measured for showers with primary energies above 1019eV at large core distances

    Longitudinal development of muons in large air showers studies from the arrival time distributions measured at 900m above sea level

    Get PDF
    The arrival time distributions of muons with energies above 1.0GeV and 0.5GeV have been measured in the Akeno air-shower array to study the longitudinal development of muons in air showers with primary energies in the range 10 to the 17th power to 10 to the 18th power ev. The average rise times of muons with energies above 1.0GeV at large core distances are consistent with those expected from very high multiplicity models and, on the contrary, with those expected from the low multiplicity models at small core distances. This implies that the longitudinal development at atmospheric depth smaller than 500 cm square is very fast and that at larger atmospheric depths is rather slow

    Extending the linearity range of eddy-current displacement sensor with magnetoplated wire

    Get PDF
    This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.ArticleIEEE TRANSACTIONS ON MAGNETICS. 43(2): 543-548 (2007)journal articl

    Reduction of eddy current loss in magnetoplated wire

    Get PDF
    ArticleCOMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING. 28(1):57-66 (2009)journal articl

    Spin-stripe density varies linearly with hole content in single-layer Bi2201 cuprate

    Full text link
    We have performed inelastic neutron scattering measurements on the single-layer cuprate Bi2+xSr2-xCuO6+y (Bi2201) with x=0.2, 0.3, 0.4 and 0.5, a doping range that spans the spin-glass (SG) to superconducting (SC) phase boundary. The doping evolution of low energy spin fluctuations was found to be characterized by a change of incommensurate modulation wave vector from the tetragonal [110] to [100]/[010] directions, while maintaining a linear relation between the incommensurability and the hole concentration, delta p. In the SC regime, the spectral weight is strongly suppressed below 4 meV. Similarities and differences in the spin correlations between Bi2201 and the prototypical single-layer system La2-xSrxCuO4 are discussed.Comment: 5 page,4 figure

    Reduction of proximity effect in coil using magnetoplated wire

    Get PDF
    This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.ArticleIEEE TRANSACTIONS ON MAGNETICS. 43(6): 2654-2656 (2007)journal articl

    Reversible Fluorination of Graphene: towards a Two-Dimensional Wide Bandgap Semiconductor

    Full text link
    We report the synthesis and evidence of graphene fluoride, a two-dimensional wide bandgap semiconductor derived from graphene. Graphene fluoride exhibits hexagonal crystalline order and strongly insulating behavior with resistance exceeding 10 GΩ\Omega at room temperature. Electron transport in graphene fluoride is well described by variable-range hopping in two dimensions due to the presence of localized states in the band gap. Graphene obtained through the reduction of graphene fluoride is highly conductive, exhibiting a resistivity of less than 100 kΩ\Omega at room temperature. Our approach provides a new path to reversibly engineer the band structure and conductivity of graphene for electronic and optical applications.Comment: 7 pages, 5 figures, revtex, to appear in PR
    corecore