43 research outputs found

    Mapping gene associations in human mitochondria using clinical disease phenotypes

    Get PDF
    Nuclear genes encode most mitochondrial proteins, and their mutations cause diverse and debilitating clinical disorders. To date, 1,200 of these mitochondrial genes have been recorded, while no standardized catalog exists of the associated clinical phenotypes. Such a catalog would be useful to develop methods to analyze human phenotypic data, to determine genotype-phenotype relations among many genes and diseases, and to support the clinical diagnosis of mitochondrial disorders. Here we establish a clinical phenotype catalog of 174 mitochondrial disease genes and study associations of diseases and genes. Phenotypic features such as clinical signs and symptoms were manually annotated from full-text medical articles and classified based on the hierarchical MeSH ontology. This classification of phenotypic features of each gene allowed for the comparison of diseases between different genes. In turn, we were then able to measure the phenotypic associations of disease genes for which we calculated a quantitative value that is based on their shared phenotypic features. The results showed that genes sharing more similar phenotypes have a stronger tendency for functional interactions, proving the usefulness of phenotype similarity values in disease gene network analysis. We then constructed a functional network of mitochondrial genes and discovered a higher connectivity for non-disease than for disease genes, and a tendency of disease genes to interact with each other. Utilizing these differences, we propose 168 candidate genes that resemble the characteristic interaction patterns of mitochondrial disease genes. Through their network associations, the candidates are further prioritized for the study of specific disorders such as optic neuropathies and Parkinson disease. Most mitochondrial disease phenotypes involve several clinical categories including neurologic, metabolic, and gastrointestinal disorders, which might indicate the effects of gene defects within the mitochondrial system. The accompanying knowledgebase (http://www.mitophenome.org/) supports the study of clinical diseases and associated genes

    Rapid progression and mortality of lysosomal acid lipase deficiency presenting in infants

    Get PDF
    PurposeThe purpose of this study was to enhance understanding of lysosomal acid lipase deficiency (LALD) in infancy.MethodsInvestigators reviewed medical records of infants with LALD and summarized data for the overall population and for patients with and without early growth failure (GF). Kaplan-Meier survival analyses were conducted for the overall population and for treated and untreated patients.ResultsRecords for 35 patients, 26 with early GF, were analyzed. Prominent symptom manifestations included vomiting, diarrhea, and steatorrhea. Median age at death was 3.7 months; estimated probability of survival past age 12 months was 0.114 (95% confidence interval (CI): 0.009-0.220). Among patients with early GF, median age at death was 3.5 months; estimated probability of survival past age 12 months was 0.038 (95% CI: 0.000-0.112). Treated patients (hematopoietic stem cell transplant (HSCT), n = 9; HSCT and liver transplant, n = 1) in the overall population and the early GF subset survived longer than untreated patients, but survival was still poor (median age at death, 8.6 months).ConclusionsThese data confirm and expand earlier insights on the progression and course of LALD presenting in infancy. Despite variations in the nature, onset, and severity of clinical manifestations, and treatment attempts, clinical outcome was poor.Genet Med 18 5, 452-458

    Mutations in SLC39A14 disrupt manganese homeostasis and cause childhood-onset parkinsonism-dystonia

    Get PDF
    Although manganese is an essential trace metal, little is known about its transport and homeostatic regulation. Here we have identified a cohort of patients with a novel autosomal recessive manganese transporter defect caused by mutations in SLC39A14. Excessive accumulation of manganese in these patients results in rapidly progressive childhood-onset parkinsonism-dystonia with distinctive brain magnetic resonance imaging appearances and neurodegenerative features on post-mortem examination. We show that mutations in SLC39A14 impair manganese transport in vitro and lead to manganese dyshomeostasis and altered locomotor activity in zebrafish with CRISPR-induced slc39a14 null mutations. Chelation with disodium calcium edetate lowers blood manganese levels in patients and can lead to striking clinical improvement. Our results demonstrate that SLC39A14 functions as a pivotal manganese transporter in vertebrates

    Expanding research to provide an evidence base for nutritional interventions for the management of inborn errors of metabolism

    Get PDF
    A trans-National Institutes of Health initiative, Nutrition and Dietary Supplement Interventions for Inborn Errors of Metabolism (NDSI-IEM), was launched in 2010 to identify gaps in knowledge regarding the safety and utility of nutritional interventions for the management of inborn errors of metabolism (IEM) that need to be filled with evidence-based research. IEM include inherited biochemical disorders in which specific enzyme defects interfere with the normal metabolism of exogenous (dietary) or endogenous protein, carbohydrate, or fat. For some of these IEM, effective management depends primarily on nutritional interventions. Further research is needed to demonstrate the impact of nutritional interventions on individual health outcomes and on the psychosocial issues identified by patients and their families. A series of meetings and discussions were convened to explore the current United States’ funding and regulatory infrastructure and the challenges to the conduct of research for nutritional interventions for the management of IEM. Although the research and regulatory infrastructure are well-established, a collaborative pathway that includes the professional and advocacy rare disease community and federal regulatory and research agencies will be needed to overcome current barriers

    Long-term effects of medical management on growth and weight in individuals with urea cycle disorders

    Get PDF
    Low protein diet and sodium or glycerol phenylbutyrate, two pillars of recommended long-term therapy of individuals with urea cycle disorders (UCDs), involve the risk of iatrogenic growth failure. Limited evidence-based studies hamper our knowledge on the long-term effects of the proposed medical management in individuals with UCDs. We studied the impact of medical management on growth and weight development in 307 individuals longitudinally followed by the Urea Cycle Disorders Consortium (UCDC) and the European registry and network for Intoxication type Metabolic Diseases (E-IMD). Intrauterine growth of all investigated UCDs and postnatal linear growth of asymptomatic individuals remained unaffected. Symptomatic individuals were at risk of progressive growth retardation independent from the underlying disease and the degree of natural protein restriction. Growth impairment was determined by disease severity and associated with reduced or borderline plasma branched-chain amino acid (BCAA) concentrations. Liver transplantation appeared to have a beneficial effect on growth. Weight development remained unaffected both in asymptomatic and symptomatic individuals. Progressive growth impairment depends on disease severity and plasma BCAA concentrations, but cannot be predicted by the amount of natural protein intake alone. Future clinical trials are necessary to evaluate whether supplementation with BCAAs might improve growth in UCDs

    Clinical characterization of a new individual with mild SC4MOL deficiency: diagnostic and therapeutic implications

    No full text
    Sterol C4-methyloxidase-like (SC4MOL) deficiency is an autosomal recessive condition caused by biallelic pathogenic variants in MSMO1, resulting in the accumulation of 4-monomethyl and 4,4′-dimethyl sterols due to an enzymatic block in the cholesterol synthesis pathway. SC4MOL deficiency was first reported in 2011, with only seven additional cases from five unrelated families described in the literature since. Based on these reports, the most characteristic clinical features include the triad of microcephaly, congenital cataracts, and psoriatic dermatitis, followed by delayed growth and puberty, and neurodevelopmental problems. Herein, we describe an 8-year-old boy who presented with congenital cataracts and developmental delay at age 6 months and was found to have biallelic variants in MSMO1 by trio exome sequencing. Initial total methylsterol levels were elevated but responsive to statin therapy, while total cholesterol levels remained normal throughout. Available clinical and biochemical data suggest this individual could represent the mildest case of SC4MOL deficiency to date

    Clinical effect and safety profile of pegzilarginase in patients with arginase 1 deficiency

    Full text link
    Hyperargininemia in patients with arginase 1 deficiency (ARG1- D) is considered a key driver of disease manifestations, including spasticity, developmental delay, and seizures. Pegzilarginase (AEB1102) is an investigational enzyme therapy which is being developed as a novel arginine lowering approach. We report the safety and efficacy of intravenously (IV) administered pegzilarginase in pediatric and adult ARG1- D patients (n = 16) from a Phase 1/2 study (101A) and the first 12- weeks of an open- label extension study (102A). Substantial disease burden at baseline included lower- limb spasticity, developmental delay, and previous hyperammonemic episodes in 75%, 56%, and 44% of patients, respectively. Baseline plasma arginine (pArg) was elevated (median 389- μM, range 238- 566) on standard disease management. Once weekly repeat dosing resulted in a median decrease of pArg of 277- μM after 20 cumulative doses (n = 14) with pArg in the normal range (40 to 115- μM) in 50% of patients at 168- hours post dose (mean pegzilarginase dose 0.10 mg/kg). Lowering pArg was accompanied by improvements in one or more key mobility assessments (6MWT, GMFM- D & E) in 79% of patients. In 101A, seven hypersensitivity reactions occurred in four patients (out of 162 infusions administered). Other common treatment- related adverse events (AEs) included vomiting, hyperammonemia, pruritus, and abdominal pain. Treatment- related serious AEs that occurred in five patients were all observed in 101A. Pegzilarginase was effective in lowering pArg levels with an accompanying clinical response in patients with ARG1- D. The improvements with pegzilarginase occurred in patients receiving standard treatment approaches, which suggests that pegzilarginase could offer benefit over existing disease management.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/168523/1/jimd12343_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/168523/2/jimd12343.pd
    corecore