202 research outputs found

    ONE STEP ELECTRODEPOSITION OF CuInSe2 THIN FILMS

    Get PDF
    Formation of CuInSe2 (CIS) thin films from aqueous solution containing citrate as complexing agent is reported. The surface morphology and the composition of the deposited films are characterized by scanning electron microscopy (SEM). The texture of the deposits and their compositions are analyzed by X-ray diffraction and transmission electron microscopy (TEM). Annealing of the films at 350°C in flowing argon electrodeposited at potentials in the range [-0.24, -0.4 (V vs Ag/AgCl)] resulted in the formation of alpha-Cu 2 Se (JCPDS 24-1131) and CuSe (JCPDS 6-0427). On the contrary, annealing in the same conditions of the films electrodeposited between -0.4 and -0.6 V vs Ag/AgCl led to the formation of chalcopyrite CuInSe 2 (JCPDS 23-209) with alpha-Cu 2 Se (JCPDS 24-1131) as secondary phase. The formation of CuInSe 2 films with a chalcopyrite structure and good stoichiometry is observed.Formation of CuInSe2 (CIS) thin films from aqueous solution containing citrate as complexing agent is reported. The surface morphology and the composition of the deposited films are characterized by scanning electron microscopy (SEM). The texture of the deposits and their compositions are analyzed by X-ray diffraction and transmission electron microscopy (TEM). Annealing of the films at 350°C in flowing argon electrodeposited at potentials in the range [-0.24, -0.4 (V vs Ag/AgCl)] resulted in the formation of alpha-Cu 2 Se (JCPDS 24-1131) and CuSe (JCPDS 6-0427). On the contrary, annealing in the same conditions of the films electrodeposited between -0.4 and -0.6 V vs Ag/AgCl led to the formation of chalcopyrite CuInSe 2 (JCPDS 23-209) with alpha-Cu 2 Se (JCPDS 24-1131) as secondary phase. The formation of CuInSe 2 films with a chalcopyrite structure and good stoichiometry is observed

    Effect of heat treatment with CdCl2 on the electrodeposited CdTe/CdS heterojunction

    Get PDF
    CdS/CdTe heterojunction was subjected to chemical treatment commonly used in photovoltaic device fabrication to determine the resulting microscopic effect on the morphology and structure. CdS and CdTe thin films were electrodeposited successively onto indium tin oxide (ITO) from aqueous solution. Containing CdCl2 and Na2S2O3 for the deposition of thin film windows, the ITO/CdS resulting substrates was then used for the deposition of CdTe thin film absorber using aqueous solution of CdSO4 and TeO2. Next CdCl2 dip followed by 400°C heat treatment was used to modify the CdTe/CdS surface and interface. Scanning electron microscopy (SEM) and Atomic force microscopy (AFM) were used to evaluate the resulting surface morphology. X-ray diffraction analysis reveals that the heat treatment enhances the recrystallisation and shifts the CdTe peaks towards a smaller lattice parameter.CdS/CdTe heterojunction was subjected to chemical treatment commonly used in photovoltaic device fabrication to determine the resulting microscopic effect on the morphology and structure. CdS and CdTe thin films were electrodeposited successively onto indium tin oxide (ITO) from aqueous solution. Containing CdCl2 and Na2S2O3 for the deposition of thin film windows, the ITO/CdS resulting substrates was then used for the deposition of CdTe thin film absorber using aqueous solution of CdSO4 and TeO2. Next CdCl2 dip followed by 400°C heat treatment was used to modify the CdTe/CdS surface and interface. Scanning electron microscopy (SEM) and Atomic force microscopy (AFM) were used to evaluate the resulting surface morphology. X-ray diffraction analysis reveals that the heat treatment enhances the recrystallisation and shifts the CdTe peaks towards a smaller lattice parameter

    Physical properties of CdSexTe1-x thin films prepared by electrodeposition

    Get PDF
    The cadmium chalcogenides CdSexTe1-x (0≤x ≤1 ) thin films have been electrodeposited onto ITO coated glass substrates from an acid sulphate solution at 90 °C. The structure, the composition and the morphology have been studied as a function of the x coefficient by XRD, EDAX, optical absorbance and AFM techniques. All deposits have a cubic structure with a preferred orientation along the (111) direction. The composition in the films is found to vary linearly with the composition in the solution. The increase of the amount of tellurium in the CdSexTe1-x films decreases the band gap down to 1.35 eV and increases the lattice constant. The photoelectrochemical studies in a polysulfide electrolyte show that CdSexTe1-x thin films behave as n-type semiconductors.The cadmium chalcogenides CdSexTe1-x (0≤x ≤1 ) thin films have been electrodeposited onto ITO coated glass substrates from an acid sulphate solution at 90 °C. The structure, the composition and the morphology have been studied as a function of the x coefficient by XRD, EDAX, optical absorbance and AFM techniques. All deposits have a cubic structure with a preferred orientation along the (111) direction. The composition in the films is found to vary linearly with the composition in the solution. The increase of the amount of tellurium in the CdSexTe1-x films decreases the band gap down to 1.35 eV and increases the lattice constant. The photoelectrochemical studies in a polysulfide electrolyte show that CdSexTe1-x thin films behave as n-type semiconductors

    Water resistant surfaces using zinc oxide structured nanorod arrays with switchable wetting property

    Get PDF
    This study presents an experimental approach for fabricating super hydrophobic coatings based on a dual roughness structure composed of zinc oxide nanorod arrays coated with a sputtered zinc oxide nano layer. The ZnO nanorod arrays were grown by means of a low temperature electrochemical deposition technique 75 C on FTO substrates. The ZnO nanorods show a 002 orientation along the c axis, and have a hexagonal structure, with an average length of 710 nm, and average width of 156 nm. On the other hand, the crystallite size of the top coating sputtered ZnO layer is of 30 nm. The as deposited ZnO nanorod arrays exhibited a hydrophobic behavior, with a surface water contact angle of 108 , whereas the dual scale roughness ZnO nanorods coated with sputtered ZnO exhibited a super hydrophobic behavior, with a surface water contact angle of 157 and a high water droplet adhesion. The photo catalytic activity of the samples was investigated against the degradation of methylene blue under UV A irradiation 365 nm . The ZnO nanorod arrays showed good photocatalytic activity whereas the superhydrophobic ZnO nanorod arrays top coated with sputtered ZnO showed minimal activity regarding the degradation of methylene blue. The superhydrophobic films exhibited high sensitivity to UV light, with a UV induced switching behavior from super hydrophobic to super hydrophilic after only 30 min of UV exposur

    Formation of a ZnS Zn S,O bilayer buffer on CuInS2 thin film solar cell absorbers by chemical bath deposition

    Get PDF
    The application of Zn compounds as buffer layers was recently extended to wide gap CuInS2 CIS based thin film solar cells. Using a new chemical deposition route for the buffer preparation aiming at the deposition of a single layer, nominal ZnS buffer without the need for any toxic reactants such as, e.g. hydrazine, has helped to achieve a similar efficiency as respective CdS buffered reference devices. In order to shed light on the differences of other Zn compound buffers deposited in conventional chemical baths CBD compared to the buffer layers deposited by this alternative CBD process, the composition of the deposited buffers was investigated by x ray excited Auger electron and x ray photoelectron spectroscopy to potentially clarify their superiority in terms of device performance. We have found that in the early stages of this alternative CBD process a thin ZnS layer is formed on the CIS, whereas in the second half of the CBD the growth rate is greatly increased and Zn S,O with a ZnS ZnS ZnO ratio of approx. 80 is deposited. Thus, a ZnS Zn S,O bi layer buffer is deposited on the CIS thin film solar cell absorbers by the alternative chemical deposition route used in this investigation. No major changes of these findings after a postannealing of the buffer CIS sample series and re characterization could be identified

    Intermixing at the heterointerface between ZnS Zn S,O bilayer buffer and CuInS2 thin film solar cell absorber

    Get PDF
    The application of Zn compounds as buffer layers was recently extended to wide gap CuInS2 CIS based thin film solar cells. Using a new chemical deposition route for the buffer preparation aiming at the deposition of a single layer, nominal ZnS buffer without the need for any toxic reactants such as, e.g. hydrazine has helped to achieve a similar efficiency as respective CdS buffered reference devices. After identifying the deposited Zn compound, as ZnS Zn S,O bi layer buffer in former investigations [M. Bär, A. Ennaoui, J. Klaer, T. Kropp, R. S ez Araoz, N. Allsop, I. Lauermann, H. W. Schock, and M.C. Lux Steiner, Formation of a ZnS Zn S,O bilayer buffer on CuInS2 thin film solar cell absorbers by chemical bath deposition , J. Appl. Phys., accepted.], this time the focus lies on potential diffusion intermixing processes at the buffer absorber interface possibly, clarifying the effect of the heat treatment, which drastically enhances the device performance of respective final solar cells. The interface formation was investigated by x ray photoelectron and x ray excited Auger electron spectroscopy. In addition, photoelectron spectroscopy PES measurements were also conducted using tuneable monochromatized synchrotron radiation in order to gain depth resolved information. The buffer side of the buffer absorber heterointerface were investigated by means of the characterization of Zn S,O ZnS CIS structures where the ZnS Zn S,O bi layer buffer was deposited successively by different deposition times. In order to make the in terms of PES information depth deeply buried absorber side of the buffer absorber heterointerface accessible for characterization, in these cases the buffer layer was etched away by dilute HClaq. We found that while out leached Cu from the absorber layer forms together with the educts in the chemical bath a Zn 1 Z ,Cu2Z S like interlayer between buffer and absorber, Zn is incorporated in the uppermost region of the absorber. Both effects are strongly enhanced by postannealing the Zn S,O ZnS CIS samples. However, it was determined that the major fraction of the Cu and Zn can be found quite close to the heterointerface in the buffer and absorber layer, respectively. Due to this limited in the range of one monolayer spatial extent, these diffusion mechanisms were rather interpreted as a CBD induced and heat treatment promoted Cu Zn ion exchange at the buffer absorber interface. Possible impacts of this intermixing on the performance of the final solar cell devices will also be discusse

    Solution processed In2S3 buffer layer for chalcopyrite thin film solar cells

    Get PDF
    We report a route to deposit In2S3 thin films from air stable, low cost molecular precursor inks for Cd free buffer layers in chalcopyrite based thin film solar cells. Different precursor compositions and processing conditions were studied to define a reproducible and robust process. By adjusting the ink properties, this method can be applied in different printing and coating techniques. Here we report on two techniques, namely spin coating and inkjet printing. Active area efficiencies of 12.8 and 12.2 have been achieved for In2S3 buffered solar cells respectively, matching the performance of CdS buffered cells prepared with the same batch of absorber
    • …
    corecore