83 research outputs found

    Role of TFEB Mediated Autophagy, Oxidative Stress, Inflammation, and Cell Death in Endotoxin Induced Myocardial Toxicity of Young and Aged Mice

    Get PDF
    Elderly patients are susceptible to sepsis. LPS induced myocardial injury is a widely used animal model to assess sepsis induced cardiac dysfunction. The age dependent mechanisms behind sepsis susceptibility were not studied. We analyzed age associated changes to cardiac function, cell death, inflammation, oxidative stress, and autophagy in LPS induced myocardial injury. Both young and aged C57BL/6 mice were used for LPS administration. The results demonstrated that LPS induced more cardiac injury (creatine kinase, lactate dehydrogenase, troponin I, and cardiac myosin-light chains 1), cardiac dysfunction (left ventricular inner dimension, LVID, and ejection fraction (EF)), cell death, inflammation, and oxidative stress in aged mice compared to young mice. However, a significant age dependent decline in autophagy was observed. Translocation of Transcription Factor EB (TFEB) to nucleus and formation of LC3-II were significantly reduced in LPS administered aged mice compared to young ones. In addition to that, downstream effector of TFEB, LAMP-1, was induced in response to LPS challenge in young mice. The present study newly demonstrates that TFEB mediated autophagy is crucial for protection against LPS induced myocardial injury particularly in aging senescent heart. Targeting this autophagy-oxidative stress-inflammation-cell death axis may provide a novel therapeutic strategy for cardioprotection in the elderly

    Exploring the relationship between lactate metabolism and immunological function in colorectal cancer through genes identification and analysis

    Get PDF
    Introduction: Metabolic dysregulation is a widely acknowledged contributor for the development and tumorigenesis of colorectal cancer (CRC), highlighting the need for reliable prognostic biomarkers in this malignancy.Methods: Herein, we identified key genes relevant to CRC metabolism through a comprehensive analysis of lactate metabolism-related genes from GSEA MsigDB, employing univariate Cox regression analysis and random forest algorithms. Clinical prognostic analysis was performed following identification of three key genes, and consistent clustering enabled the classification of public datasets into three patterns with significant prognostic differences. The molecular pathways and tumor microenvironment (TME) of these patterns were then investigated through correlation analyses. Quantitative PCR was employed to quantify the mRNA expression levels of the three pivotal genes in CRC tissue. Single-cell RNA sequencing data and fluorescent multiplex immunohistochemistry were utilized to analyze relevant T cells and validate the correlation between key genes and CD4+ T cells.Results: Our analysis revealed that MPC1, COQ2, and ADAMTS13 significantly stratify the cohort into three patterns with distinct prognoses. Additionally, the immune infiltration and molecular pathways were significantly different for each pattern. Among the key genes, MPC1 and COQ2 were positively associated with good prognosis, whereas ADAMTS13 was negatively associated with good prognosis. Single-cell RNA sequencing (scRNA-seq) data illustrated that the relationship between three key genes and T cells, which was further confirmed by the results of fluorescent multiplex immunohistochemistry demonstrating a positive correlation between MPC1 and COQ2 with CD4+ T cells and a negative correlation between ADAMTS13 and CD4+ T cells.Discussion: These findings suggest that the three key lactate metabolism genes, MPC1, COQ2, and ADAMTS13, may serve as effective prognostic biomarkers and support the link between lactate metabolism and the immune microenvironment in CRC

    Topological Hall Effect Driven by Short-Range Magnetic Orders in EuZn2_2As2_2

    Full text link
    Short-range (SR) magnetic orders such as magnetic glass orders or fluctuations in a quantum system usually host exotic states or critical behaviors. As the long-range (LR) magnetic orders, SR magnetic orders can also break time-reversal symmetry and drive the non-zero Berry curvature leading to novel transport properties. In this work, we report that in EuZn2_2As2_2 compound, besides the LR A-type antiferromagnetic (AF) order, the SR magnetic order is observed in a wide temperature region. The magnetization measurements and electron spin resonance (ESR) measurements reveal the ferromagnetic (FM) correlations for this SR magnetic order which results in an obvious anomalous Hall effect above the AF transition. Moreover the ESR results reveal that this FM SR order coexists with LR AF order exhibiting anisotropic magnetic correlations below the AF transition. The interactions of LR and SR magnetism evolving with temperature and field can host non-zero spin charility and berry curvature leading the additional topological Hall contribution even in a centrosymmetric simple AF system. Our results indicate that EuZn2_2As2_2 is a fertile platform to investigate exotic magnetic and electronic states.Comment: 6 pages, 4 figure

    Hormonal regulation of ovarian bursa fluid in mice and involvement of aquaporins.

    Get PDF
    In rodent species, the ovary and the end of oviduct are encapsulated by a thin membrane called ovarian bursa. The biological functions of ovarian bursa remain unexplored despite its structural arrangement in facilitating oocytes transport into oviduct. In the present study, we observed a rapid fluid accumulation and reabsorption within the ovarian bursa after ovarian stimulation (PMSG-primed hCG injection), suggesting that the ovarian bursa might play an active role in regulating local fluid homeostasis around the timing of ovulation. We hypothesized that the aquaporin proteins, which are specialized channels for water transport, might be involved in this process. By screening the expression of aquaporin family members (Aqp1-9) in the ovarian tissue and isolated ovarian bursa (0, 1, 2 and 5 h after hCG injection), we found that AQP2 and AQP5 mRNA showed dynamic changes after hCG treatment, showing upregulation at 1-2 h followed by gradually decrease at 5 h, which is closely related with the intra-bursa fluid dynamics. Further immunofluorescence examinations of AQP2 and AQP5 in the ovarian bursa revealed that AQP2 is specifically localized in the outer layer (peritoneal side) while AQP5 localized in the inner layer (ovarian side) of the bursa, such cell type specific and spatial-temporal expressions of AQP2 and 5 support our hypothesis that they might be involved in efficient water transport through ovarian bursa under ovulation related hormonal regulation. The physiological significance of aquaporin-mediated water transport in the context of ovarian bursa still awaits further clarification

    Cooperation-based sperm clusters mediate sperm oviduct entry and fertilization

    Get PDF
    Sperm cooperation has been observed in multiple species, yet its existence and benefit for reproductive success in mammals remains underexplored. Here, combining tissue-clearing with deep three-dimensional imaging, we demonstrate that postcopulatory mouse sperm congregate into unidirectional sperm cooperative clusters at the utero-tubal junction (UTJ), a key physical barrier for passage into the oviduct. Reducing sperm number in male mice by unilateral vasoligation or busulfan-treatment impairs sperm cluster formation and oviduct entry. Interestingly, sperm derived from Tex101-/- mouse has normal number, motility and morphology, yet they cannot form sperm cluster and fail to pass through the UTJ, which is at least in part due to the altered tail beating pattern of the Tex101-/- sperm. Moreover, Tex101-/- sperm's defect in oviduct entry cannot be rescued by the presence of wild-type (WT) sperm in the same uteri by sequential mating, suggesting sperm cooperative cluster as an essential behavior contributing to male fertility, which could be related to human infertility or subfertility

    Apigenin Alleviates Endotoxin-Induced Myocardial Toxicity by Modulating Inflammation, Oxidative Stress, and Autophagy

    No full text
    Apigenin, a component in daily diets, demonstrates antioxidant and anti-inflammatory properties. Here, we intended to explore the mechanism of apigenin-mediated endotoxin-induced myocardial injury and its role in the interplay among inflammation, oxidative stress, and autophagy. In our lipopolysaccharide- (LPS-) induced myocardial injury model, apigenin ameliorated cardiac injury (lactate dehydrogenase (LDH) and creatine kinase (CK)), cell death (TUNEL staining, DNA fragmentation, and PARP activity), and tissue damage (cardiac troponin I (cTnI) and cardiac myosin light chain-1 (cMLC1)) and improved cardiac function (ejection fraction (EF) and end diastolic left ventricular inner dimension (LVID)). Apigenin also alleviated endotoxin-induced myocardial injury by modulating oxidative stress (nitrotyrosine and protein carbonyl) and inflammatory cytokines (TNF-α, IL-1β, MIP-1α, and MIP-2) along with their master regulator NFκB. Apigenin modulated redox homeostasis, and its anti-inflammatory role might be associated with its ability to control autophagy. Autophagy (determined by LAMP1, ATG5, and p62), its transcriptional regulator transcription factor EB (TFEB), and downstream target genes including vacuolar protein sorting-associated protein 11 (Vps11) and microtubule-associated proteins 1A/1B light chain 3B (Map1lc3) were modulated by apigenin. Thus, our study demonstrated that apigenin may lead to potential development of new target in sepsis treatment or other myocardial oxidative and/or inflammation-induced injuries
    • …
    corecore