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Introduction: Metabolic dysregulation is a widely acknowledged contributor for
the development and tumorigenesis of colorectal cancer (CRC), highlighting the
need for reliable prognostic biomarkers in this malignancy.

Methods: Herein, we identified key genes relevant to CRC metabolism through a
comprehensive analysis of lactate metabolism-related genes from GSEA MsigDB,
employing univariate Cox regression analysis and random forest algorithms.
Clinical prognostic analysis was performed following identification of three key
genes, and consistent clustering enabled the classification of public datasets into
three patterns with significant prognostic differences. The molecular pathways
and tumor microenvironment (TME) of these patterns were then investigated
through correlation analyses. Quantitative PCR was employed to quantify the
mRNA expression levels of the three pivotal genes in CRC tissue. Single-cell RNA
sequencing data and fluorescent multiplex immunohistochemistry were utilized
to analyze relevant T cells and validate the correlation between key genes and
CD4+ T cells.

Results: Our analysis revealed that MPC1, COQ2, and ADAMTS13 significantly
stratify the cohort into three patterns with distinct prognoses. Additionally, the
immune infiltration and molecular pathways were significantly different for each
pattern. Among the key genes, MPC1 and COQ2 were positively associated with
good prognosis, whereas ADAMTS13 was negatively associated with good
prognosis. Single-cell RNA sequencing (scRNA-seq) data illustrated that the
relationship between three key genes and T cells, which was further confirmed
by the results of fluorescent multiplex immunohistochemistry demonstrating a
positive correlation between MPC1 and COQ2 with CD4+ T cells and a negative
correlation between ADAMTS13 and CD4+ T cells.

Discussion: These findings suggest that the three key lactate metabolism genes,
MPC1, COQ2, and ADAMTS13, may serve as effective prognostic biomarkers and
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support the link between lactate metabolism and the immune microenvironment
in CRC.
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Introduction

CRC remains the most prevalent cancer of the digestive system.
Comprehensive treatment, mainly surgery, is the current
mainstream approach to CRC treatment, with targeted therapies
and immunotherapy being developed as important cutting-edge
research (Dekker et al., 2019; Sung et al., 2021). While therapeutic
options have led to improvements in overall survival of CRC
patients, challenges persist in accurately predicting clinical
prognosis and the likelihood of immunotherapy response (Lech
et al., 2016). Given these challenges, there is an increasing interest
among investigators to identify new biomarkers and elucidate tumor
biological processes that could enhance the prediction of prognosis
and identify relevant targets in CRC.

The TME comprises various components, including malignant
cells, immune infiltrating cells, blood vessels, fibroblasts, and the
extracellular matrix, that contribute greatly to tumorigenesis and
tumor development (Quail and Joyce, 2013). Tumor cells interact
with the TME is a critical aspect of invasion, metastasis, resistance
to treatment, and other processes (Binnewies et al., 2018). Immune cells
particularly play a crucial role in the TME, influencing targeted therapy,
immunotherapeutic response, and survival prediction (Gajewski et al.,
2013). The metabolic changes that occur within immune cells upon
migration to the TME are also significant. Different immune cell
subpopulations have distinct nutritional requirements for metabolic
programming, and they can participate in various metabolic processes
within the TME, impacting tumor progression (Dey et al., 2021). For
instance, immune checkpoint inhibitors (ICIs) targeting programmed
cell death protein 1 (PD-1), programmed cell death-Ligand 1 (PD-L1),
and cytotoxic T lymphocyte-associated antigen-4 (CTLA-4), can
reverse the tumor-induced metabolic restriction of T cell glucose,
leading to the restoration of anti-tumor effects (Kraehenbuehl et al.,
2022). Moreover, inherent differences in glutamine metabolism
dependence are observed among different subtypes of macrophages,
such as M1 and M2, which can be differentially utilized by cancer and
immune cells for glutamine (Cruzat et al., 2018; Shang et al., 2020).

The “Warburg effect” is an important metabolic feature of tumors,
and research on metabolic reprogramming related to tumor genesis and
development is becoming one of the most cutting-edge research areas in
oncology (Koppenol et al., 2011). In hypoxic conditions, cancer cells
enhance their glycolytic activity leading to lactic acid accumulation in
TME, which is then metabolized by neighboring cells, promoting
metabolic reprogramming (Wang et al., 2020; Apostolova and Pearce,
2022). Lactic acid accumulation contributes to tumor cell proliferation,
reduces TME pH, and inhibits the effectiveness of immune cells, leading
to immunosuppression (Ippolito et al., 2019). Therefore, research on
targeted lactate metabolism inhibition and lactate metabolism genes has
become an important direction for cancer therapy. Different tumor
metabolic patterns have distinct outcomes for CRC prognosis, and
metabolic-related patterns and genetic markers show promising
prognostic and predictive value (Xia et al., 2021; Lian et al., 2022).

Thus, they hold potential to overcome the limitations of current models
such as clinical TNM staging in accurately predicting tumor recurrence,
metastasis, and survival in CRC patients.

In our investigation, we examined the dissimilar expression of genes
involved in lactate metabolism in CRC. Through bioinformatic
methods, we identified significant lactate metabolism genes and
evaluated the potential functions for predicting patient survival by
dividing the CRC cohorts into three patterns. Then we analyzed the
prospective molecular mechanisms and the effects on TME in the three
clusters. Additionally, we conducted a comprehensive analysis of
immune cell infiltration and clinical sample validation for the
significant genes. Finally, we confirmed the role of these genes in
the TME using scRNA-seq analysis (Figure 1).

Materials and methods

Public datasets collection

Human mRNA expression profiles and clinical information for
CRC and normal adjacent tissues were downloaded from The Cancer
Genome Atlas (TCGA). (https://tcga-data.nci.nih.gov/tcga/), and
GSE39582 (Marisa et al., 2013) and GSE161158 (Szeglin et al., 2022)
from NCBI Gene Expression Omnibus (GEO) databases (https://www.
ncbi.nlm.nih.gov/geo/). The RNA-sequencing data originally provided
as fragments per kilobase of transcript per million mapped reads
(FPKM) values were converted to transcripts per million (TPM)
values for analysis in the TCGA datasets. Then, we utilized the R
package “limma” to download and normalized matrix files for
microarray data from GEO. The present study employed a data
integration strategy, specifically merging two distinct datasets
(GSE39582 and GSE161158), followed by the implementation of the
“Combet” algorithm using the “SVA” R package. The aim of this
methodological approach was to effectively mitigate the impact of batch
effects and thereby facilitate accurate and reliable downstream analyses
(Muller et al., 2016).

Cox regression analysis

We utilized the Cox proportional hazards model to conduct a
univariate regression analysis in order to identify genes with a
statistically significant p-value of less than 0.05. Specifically, the
Cox regression analysis was employed as a means of narrowing
down the pool of potential prognostic genes under investigation.

Random forest

Applying random forest to downscale survival data of
prognostic genes after Cox regression, ranked and filtered key
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genes according to variable importance. To perform feature
selection, we leveraged the “randomForestSRC” package in this
study. Specifically, we utilized a relative importance threshold of
less than 0.4 to determine the final set of genes selected for
analysis. The selected genes were subsequently ranked based on
their importance scores, as determined by the random forest
algorithm.

Consensus clustering analysis

Consensus unsupervised cluster analysis was conducted to
distribute CRC samples into distinct clusters, based on key gene
expression profiles obtained from TCGA and GEO databases. To
ensure consistent and reliable clustering, we employed the
“ConsensusClusterPlus” R package. The optimal number of
subgroups was determined through a combination of cumulative
distribution function and consensus matrices analysis (Wilkerson
and Hayes, 2010). Furthermore, so as to validate the clustering
results obtained through the consensus unsupervised cluster

analysis, Principal Component Analysis (PCA) was used as the
clustering algorithm.

GSVA and ssGSEA

To evaluate different biological processes for different patterns,
we performed the non-parametric unsupervised analysis method of
Gene Set Variation Analysis (GSVA). This involved converting the
expression matrix of genes across samples into the expression matrix
of gene sets across samples, thus enabling us to identify and compare
differential pathways in different models. To conduct the GSVA
analysis on CRC samples, we utilized the “GSVA” R package and the
reference gene set “c2.cp.kegg.v7.5.1.symbols.gmt” obtained from
theMSigDB database (Hanzelmann et al., 2013). In order to evaluate
the infiltration level for immune cells in different patterns, we
employed single-sample gene set enrichment analysis (ssGSEA)
to calculate the relative abundance of immune cells in the TME.
The immune cell gene sets used in this analysis were determined
from previous studies (Charoentong et al., 2017).

FIGURE 1
The flowchart of this study.
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Correlation of lactate-related genes with
clinical characteristics and prognosis in
colorectal cancer patients

In addition, we evaluated different overall survival (OS) among
the three patterns identified in our analysis. This was accomplished
through the use of Kaplan-Meier analysis by utilizing the “Survival”
and “Survminer” R packages.

Fluorescent multiplex
immunohistochemistry

Tissue microarray (TMA) slides were subjected to the following
procedures: first, dewaxing with xylene, followed by rehydration
through a graded ethanol series. Endogenous peroxidase activity was
blocked using 3% hydrogen peroxide (Sinopharm Chemical Reagent
Co., China, #73113760) for 10 min. The slides were then rinsed in
PBS, underwent hot antigen repairing, and were subsequently
washed with PBS. Next, 5% BSA (Sigma, Shanghai, China, #
B2064) was added to each slide and incubated at room
temperature for 20 min. Primary antibodies were then added to
the slides in a volume of 100 μL each: COQ2 (Sino Biological, Rabbit
anti-human mAb, 1:100, 206810-T08), MPC1 (SAB, Rabbit anti-
human mAb, 1:200, #42898), and ADAMTS13 (SAB, Rabbit anti-
human mAb, 1:150, #49953). The slides were incubated overnight at
4°C. The following day, the slides were rinsed with PBS and
incubated with a labeled secondary antibody (Abcam, Goat anti-
rabbit IgG H&L (HRP), 1:2000, ab205718) at 37°C for 30 min. After
rinsing again with PBS, each section was treated with 100ul try-488
Tyramine Conversion Reagent (runnerbio, Bry-try488) and
incubated for 10–30 min at room temperature. Finally, the
sections were mounted with anti-fluorescence quenching sealer
containing DAPI (Beyotime Biotechnology, China, P0131).

Real time quantitative PCR (RT-qPCR)

The primers utilized for qPCR analysis were designed through
the use of Primer 6.0 software. The primer sequences of all genes
were listed as follows: COQ2-F: GGGGAGCGTTACTTGGATGG,
COQ2-R: AACCGCAGAGCCGTTGACTT; MPC1-F: CCCTCT
GTTGCTATTCTTTGAC, MPC1-R: TACTTCATTTGTTGCGTG
GC; ADAMTS13-F: TGGTCGTGTCGAGTACAGAGTG,
ADAMTS13-R: CGTGGCTTAGGCTGGAAGTA. RT-qPCR
analyses were quantified with SYBR-Green (BioTNT, Shanghai,
China), and the levels were normalized to the level of ACTB.

Single cell RNA-seq (scRNA-seq) data
process

The CRC scRNA-seq dataset GSE132257 (Lee et al., 2020) was
downloaded as required from the GEO database. Two colorectal
cancer (CRC) patients underwent scRNA-seq analysis on cancer or
distant normal tissue dissociates. The scRNA-seq data in Seurat
object format, containing gene expression information, was
imported into the Seurat (v2.3.0) R toolkit using the Read10× ()

function (Satija et al., 2015). A total of 18,409 cells from 10 sample
preparations were analyzed. The integrated data was normalized by
scaling, followed by the t-Distributed stochastic neighbor
embedding (tSNE) method. Annotating single cell data was
performed using the “celldex” R package. Further, the T-cell
subpopulations were annotated using the
“HumanPrimaryCellAtlasData_fine” dataset. Additionally, to
estimate cell differentiation, we employed analysis via
CytoTRACE, which is a validated method for forecasting cell
differentiation using scRNA-seq data (Gulati et al., 2020).

Statistical analysis

Statistical analysis of the data was carried out using R-4.1.2 and
GraphPad Prism 9. For normally distributed variables, statistical
significance was evaluated using the Student’s t-test, while for
nonparametric or parametric methods, Wilcoxon test and
Kruskal-Wallis test were used (Hazra and Gogtay, 2016). It was
decided to conduct all statistical analyses on a two-sided basis, with a
probability level of 0.05 being considered statistically significant.

Results

Characteristics and screening of key genes
involved in lactate metabolism

Characterizing lactate metabolism genes and screening key
genes associated with HP_INCREASED_SERUM_LACTATE
were obtained from GSEA MSigDB, 195 lactate metabolism genes
were collected for comprehensive analysis (Supplementary Table
S1). Differential gene expression analysis was conducted to compare
the expression of genes involved in lactate metabolism between
normal and tumor tissues. The differentially expressed genes were
visualized in CRC samples obtained from TCGA database
(Supplementary Figure S1A). Most lactate metabolism genes were
highly expressed in tumor tissues, and we further analyzed the
protein-protein interactions of the differential genes
(Supplementary Figure S1B). A univariate Cox regression analysis
was conducted on 195 genes involved in lactate metabolism in a
cohort of 515 patients with CRC obtained in the TCGA dataset. This
analysis identified 15 genes that were found to be prognostic and are
presented in a forest plot (Supplementary Figure S1C;
Supplementary Table S2). Gene ontology and KEGG pathway
analyses were also applied on lactate metabolism genes
(Supplementary Figure S2A, B).

A random forest method was employed to select key genes from
15 prognostic genes, based on their relative importance scores using
the “randomForestSRC” package for further selection. Genes with a
score <0.4 were excluded, and the top three genes on variable
importance were identified as COQ2, MPC1, and ADAMTS13
(Figures 2A, B). The association between the number of
classification trees and the error rate was examined
(Supplementary Table S3). Using the expression levels of these
three key genes, we predicted the prognosis of CRC patients and
found that high expression of COQ2 and MPC1 was associated with
better prognosis, while high expression of
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ADAMTS13 corresponded to a negative prognosis (Figures 2C–E).
These results suggest that the expression levels of COQ2, MPC1, and
ADAMTS13 have the potential to serve as prognostic biomarkers
for CRC.

Molecular types based on lactate
metabolism key genes

To investigate the potential clinical value and underlying
mechanisms of lactate metabolism key genes in CRC, we utilized
the TCGA database to perform consistent clustering analysis on
515 samples (Figure 3A). Using the cumulative distribution function
plots and tracking plot, we classified the TCGA-CRC cohort into
three distinct patterns based on the expression levels of the three key
genes. Furthermore, we employed PCA on the TCGA cohort and
found that the three clusters were well-separated (Figure 3B;
Supplementary Table S4). Notably, Kaplan-Meier survival
analysis indicated CRC patients in Cluster C3 had the worst
prognosis, while those in Cluster C1 and Cluster C2 had better
prognoses (Figure 3C). To validate these results, we conducted
consistent clustering and PCA analysis on an additional set of
746 CRC samples from the GEO-meta cohort by merging
GSE39582 and GSE161158 datasets (Supplementary Table S4).
The clustering results of the validation set were consistent with
those of the TCGA cohort, successfully separating the samples into
three clusters (Figures 3D, E). Consistent with the TCGA results, the
survival analysis of the GEO-meta cohort demonstrated that Cluster
C3 was associated with the shortest prognosis, while Cluster C1 and
C2 were associated with longer prognoses (Figure 3F).

Analysis of different pathways and clinical
features in subtypes

To explore the characteristics of the clustering model
constructed by lactate metabolism key genes, we analyzed and
summarized their associated differential pathways and clinical
features.

In the TCGA-CRC cohort, GAVA was displayed to analyze the
different pathways within clusters. We found that part of pathways
about immune defense and cytokine/receptor interaction had lower
expression in Cluster C3 verse Cluster C2 and C1. These immune
related signal pathways mainly included ANTIGEN PROCESSING
AND PRESENTATION, PRIMARY IMMUNOEFICIRNCY,
CHEMOKINE SIGNALING PATHWAY and so on (Figures 4A,
B). The results indicated that the poor prognosis of Cluster C3 in the
clustering pattern corresponding to lactate metabolism key genes
had close relationship with the lower expression of immune
signaling pathways. Moreover, TME-related biological signatures
(Zeng et al., 2019) had been evaluated the different clusters
characteristics (Figure 4C). The results revealed that the
oncogenic signatures of the TME associated with poorer
prognosis Cluster C3 were generally higher, including EMT1,
EMT3, and Pan-fibroblast TGF-β response signature (Pan-F-
TBRs). Conversely, the TME anti-cancer signatures
corresponding to better prognosis Clusters C1 and C2 were
stronger, such as Antigen-processing-machinery, Genetic-repair-
signature, CD8+ T effector, DNA-damage-response, Immune-
checkpoint, and TMEscoreA. Furthermore, we also analyzed the
differences in clinical features among the three clusters from
GES39582 and found that BRAF and MMR had significant

FIGURE 2
Random forest screening for lactate metabolism genes (A) Error rate for the data as a function of the classification tree. (B) Random forest was used
to identify key genes in the prognostic genes (relative importance threshold <0.4). (C–E) Overall survival prognosis and survival curves of COQ2, MPC1,
ADAMTS13 for CRC samples.
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variations. The minimum number of mutations for BRAF andMMR
were observed in the poor prognosis Cluster C3 (Figures 4D–G).
Moreover, we conducted a correlation analysis of the proteins
corresponding to the three key genes. GeneMANIA database
analysis indicated that these three proteins interacted with several
metabolism-related proteins and might be involved in processes
related to lactate metabolism (Supplementary Figure S3A).
Furthermore, we utilized the STITCH database to demonstrate
drugs with p value < 0.05 and investigate the proteins targeted
by corresponding drugs to elucidate the possible targets and signal
pathways associated with the three proteins. (Supplementary Figures
S3B–D).

Relationship between lactate metabolism
key genes and tumor immune
microenvironment in CRC

Distinct pathways indicating an immune-related influence have
been confirmed across different clusters. To further explore this

direction, we examined immune infiltrating and the genes of
immune checkpoint in the clusters (Supplementary Table S5).
Cluster C3 exhibited lower levels of conventional anti-tumor
immune cells, including activated B cells, CD8+ T cells, CD4+

T cells, and NK cells, as compared with C1 and C2 (Figure 5A).
Moreover, we conducted correlation analysis for immune checkpoint
expression level for the different patterns, and found that C3 had lower
expression levels of the several genes including TNFRSF9, CD86, CD80,
PVR, CD8A, TNFRSF4, ICOS, IFNG, IL12B, CD274, TNFSF4,
HAVCR2, PDCD1LG2, TNFSF18, CD28, JAK2, PTPRC, and
LDHA (Figure 5B). C3 had the highest percentage of MSS among
the clusters, which was associated with a poorer prognosis, whereas
C2 and C1 had the highest percentage of MSI-H and were associated
with a better prognosis (Figure 5C). These findings suggest that the
three key genes involved in lactate metabolism may be closely linked to
the immune microenvironment and immunotherapy. To further
investigate this relationship, we performed ssGSEA analysis of
immune infiltration for the three genes (Figures 5D–F). The results
indicated that COQ2 and MPC1 were positively correlated with the
majority of immune cells, while ADAMTS13 was negatively correlated

FIGURE 3
Consensus cluster analysis of key genes in lactate metabolism (A) CRC samples from TCGA were used to construct a prognostic signature. The
cohort was divided into three patterns when k = 3. (B) PCA algorithm divided CRC samples from TCGA into three clusters. (C) Overall survival rates for
Cluster C3 were significantly lower than those for Cluster C1 and Cluster 2. p < 0.05. (D) To build the prognostic signature for CRC samples from GEO-
Meta cohort (GES39582, GES161158) by consensus clustering. The cohort was also divided into three patterns when k = 3. (E) In GEO-Meta, three
clusters of CRC samples were determined using the PCA algorithm. (F) In GEO-Meta, Cluster C3 also had the shortest overall survival rate compared to
Cluster C1 and Cluster 2. p < 0.05.
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with the majority of immune cells. Notably, CD4+ T cells were found to
be strongly associated with all three genes.

Validation of the key genes with clinical
samples and scRNA-seq analysis

For the three key genes COQ2, MPC1 and ADAMTS13, we
analyzed the gene expression in CRC and the adjacent tissues of
corresponding patients in the TCGA database (Figures 6A–C). It
was observed that the expression level of MPC1 was clearly elevated
in adjacent normal tissues comparing with CRC, while
ADAMTS13 was considerably upregulated in tumor tissues in
contrast to normal tissues. However, there was no statistically
significant differences observed in the expression levels of COQ2 in
CRC and normal tissues. Afterwards, to confirm the expression of the
key genes, we also collected the patient’s tumor tissue and the
corresponding normal tissue from Ruijin Hospital and performed
RT-qPCR (Figures 6D–F). The expression of the three genes,
COQ2, MPC1, and ADAMTS13, in normal and tumor tissues was
analyzed, revealing that the expression of MPC1 was higher in normal
tissues, while ADAMTS13 was higher in tumor tissues.
COQ2 expression did not differ significantly between the two types
of tissues. Further analysis was performed to investigate the correlation

between the expression of these genes and CD4+ T cells in TCGA
samples (Figures 6G–I). The results showed a positive association
between MPC1 and COQ2 with CD4+ T cells, while
ADAMTS13 was negatively associated with CD4+ T cells. Based on
our findings, we conducted a prognostic analysis focusing on the
potential oncogene ADAMTS13. In the univariate Cox hazard
analysis, ADAMTS13 emerged as a significant risk factor,
demonstrating a strong predictive role in patients with colorectal
cancer (CRC). However, its significance diminished to some extent
in themultivariate analysis (Supplementary Figures S4A, B). To validate
the accuracy of the nomogram, we performed a calibration analysis
(Supplementary Figure S4C). Encouragingly, the results indicated that
the predicted line in the nomogram closely approximated the actual
survival rate (Supplementary Figure S4D). These findings suggest that
ADAMTS13 might serve as a potential prognostic biomarker in CRC
and warrant further investigation. We further conducted an analysis of
the functional pathway correlations of ADAMTS13 with cancer
development in CRC samples. The results revealed a significant
association with various pathways, including tumor progression, cell
migration and invasion abilities, tumor proliferation, and metabolism.
These findings suggest that ADAMTS13may play an active role in these
pathways in the context of CRC development (Supplementary Figures
S5A–I). These findings led to further investigation of the immune
microenvironment. Using the t-SNE method, GSE132257 cells were

FIGURE 4
Molecular features of different clusters (A, B) Three distinct clusters of KEGG biological pathways are identified by GSVA enrichment analysis; pink
represents active pathways, while blue represents inhibited pathways. (C) Boxplot showing each TME signature for each cluster in the TCGA cohort.
(D–G) Based on GES39582, the proportion of mutation features in each cluster. (* p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001).
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grouped into 8 major cell types, including T cells, epithelial cells, B cells,
monocytes, macrophages, fibroblasts, Common Myeloid Progenitors
(CMP), and endothelial cells (Figure 7A).We found that multiple T cell
subsets were closely associated with three key genes in immune
infiltration analysis, so we further analyzed and annotated the T cell
subsets, mainly five cell subtypes: CD4+ effector memory cell, NK cell,
CD4+ central memory cell, CD8+ central memory cell and gamma-delta
T cell (Figure 7B). Next, we compared the differentiation potential of
different T-cell subtypes.We estimated a higher differentiation potential
for gamma-delta T cell and CD4+ T cell based on CytoTRACE, (Figures
7C, D).We found that three key genes were most abundantly expressed
in gamma-delta T cells (Figure 7E). Besides, we also showed the

correlation genes between T cells and lactate metabolism with
CytoTRACE (Figure 7F).

Validation of the relationship between key
genes with CD4+ T cell

We further investigated the correlation between CD4+ T cells
and three genes, namely, MPC1, COQ2, and ADAMTS13, in CRC
patients. The results demonstrated a positive correlation between
CD4+ T cells and MPC1 and COQ2, while a negative correlation
between CD4+ T cells and ADAMTS13. Notably, the correlation

FIGURE 5
Immune infiltration analysis of lactate metabolism gene clusters (A) An analysis of the RNA-seq meta cohort shows that immune cells are abundant
in three patterns. (B) Comparing gene expression of major immune checkpoints among three clusters using boxplots. (C)Microsatellite instability in the
three clusters is represented by the proportion of patients. (D–F) The three key genes are correlated with immune infiltration. (* p < 0.05; ** p < 0.01; ***
p < 0.001).
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between COQ2 and ADAMTS13 was found to be stronger than that
between the other gene pairs. To gain a deeper understanding of the
relationship between the relevant T cells and the three genes at the
single cell level, further analysis was conducted. In addition,
fluorescent multiplex immunohistochemistry was carried out in
CRC tissue microarrays to examine the expression of the three
key genes (Figure 8). Double-labeled fluorescence localization of
CD4 and the three genes separately revealed that higher expression
of COQ2 andMPC1 was related with higher levels of CD4 signaling,
while low expression of COQ2 and MPC1 corresponded to lower
levels of CD4 signaling. In contrast, high expression of
ADAMTS13 was associated with lower levels of CD4 signaling.
These findings provide further support for the initial observation
that COQ2 and MPC1 are positively correlated with CD4+ T cells,
while ADAMTS13 is negatively correlated with CD4+ T cells
(Supplementary Figure S4).

Discussion

CRC is a cancer with a high degree of heterogeneity and complex
molecular mechanisms. Metabolic reprogramming has been identified

as a pivotal regulator of tumorigenesis and progression in CRC (Faubert
et al., 2020), and lactate and lactate-mediated signaling pathways have
been found to contribute to various aspects of tumor progression
(Brown and Ganapathy, 2020; Jin et al., 2021). As glucose
metabolism increases dramatically and lactate accumulates in tumor
cells during rapid tumor growth, lactate is considered a metabolic
product that promotes cancer cell proliferation (Vaupel et al., 2019).
Therefore, the identification of key molecules involved in lactate
metabolism as new biological markers for the explanation of CRC
molecularmechanisms and clinical prognosis holds significant promise.
Additionally, the potential impact of the TME on tumor metabolism is
substantial. As critical components of the TME, immune cells are likely
to play a role in regulating lactatemetabolism (Andrejeva and Rathmell,
2017; Madden and Rathmell, 2021). Therefore, exploring the
interactions between metabolism and immunity is particularly
important, as this could provide a reliable basis for investigating
how metabolites affect tumor progression.

In the present study, COX regression and random forest methods
were utilized to screen lactate metabolism genes in the CRC cohort,
resulting in the identification of three key genes: MPC1, COQ2, and
ADAMTS13. According to previous studies, decreased
MPC1 expression results in increased glycolysis and compensatory

FIGURE 6
Clinical verification of key genes and correlation analysis of CD4+ T cells (A–C) Expression of COQ2, MPC1, ADAMTS13 between normal and tumor
tissues in TCGA CRC samples. (D–F) According to the qPCR results, three key genes are expressed in CRC samples, n = 8. (G–I) Relative plot of activated
CD4+ T cell with the three key genes. (* p < 0.05; ** p < 0.01; *** p < 0.001).
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glutamine metabolism (Grenell et al., 2019; Jiang et al., 2022). COQ2 is
involved in the synthesis of CoQ10, which in turn affects the electron
transport chain and aerobic respiration in cellular mitochondria.
Decreased expression of COQ2 disrupts the normal process of the
tricarboxylic acid cycle (Rabanal-Ruiz et al., 2021). Increased
ADAMTS-13 activity is associated with increased serum lactate, an
important plasma molecule in lactate metabolism that has been
implicated in tumor progression, metastasis and micro thrombosis
(Garam et al., 2018; Faqihi et al., 2021). The clinical prognostic ability of
these three genes was validated in the TCGA cohort, where high
expression of COQ2 and MPC1 was associated with better
prognosis for CRC patients, while high expression of
ADAMTS13 was associated with worse prognosis.

Using these findings, a consistent clustering method that
incorporated the three key genes was developed, which successfully
separated the TCGA and meta-GEO cohorts into three distinct
patterns. These patterns exhibited significant differences in survival
prognosis in both cohorts, and further molecular pathway and clinical

feature analyses of the three patterns were consistent with the
prognostic analysis. Additionally, Immune infiltration analysis is an
important method for immune cell-related analysis of transcriptome
data (Newman et al., 2015). Our results revealed that poor prognosis in
one of the patterns was highly correlated with high levels of immune-
suppressive cell infiltration, while good prognosis in the other two
patterns was closely related to T cells and B cells. The consistency
clustering model using the three key genes can effectively distinguish
clinical patient prognosis and is useful for related basic research.
Moreover, immune infiltration analysis and clinical sample
validation were performed for each of the three genes, and it was
depicted that all three genes were highly related with distinct types of
T cells, especially CD4+ T cells being the most correlated immune cells.
Besides, the expression of the three key genes was found to vary between
tumor and normal tissues, with COQ2 showing a trend of higher
expression in tumors, MPC1 being expressed more in normal tissues,
and ADAMTS13 being expressed more in tumors. We also conducted
explorations concerning the potential oncogene, ADAMTS13, among

FIGURE 7
Single-cell data analysis of key genes (A) t-SNE plot of 8 cell clusters in GSE132257. (B) Cell distribution in T cell cluster. (C–D) Using CytoTRACE,
differentiation status of different T cell types is determined. A lower score indicates lower differentiation. (E) Expression of three key genes in different
T cell subsets. (F) Correlation genes between T cells and lactate metabolism with CytoTRACE.

Frontiers in Cell and Developmental Biology frontiersin.org10

Zhang et al. 10.3389/fcell.2023.1173803

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1173803


the key genes. We found that ADAMTS13, as a potential risk gene in
tumors, could serve as a clinical prognostic marker for CRC. Moreover,
ADAMTS13 exhibited close correlations withmultiple pathways related
to tumor occurrence, tumor cell proliferation, and migration. These
findings suggest that ADAMTS13, as a crucial gene in lactate
metabolism, may play a significant role in the development of CRC.
As a result, further investigations into the role of this gene are warranted
to gain deeper insights into its relevance and implications in the future.

Single-cell omics analysis has significant advantages for studying the
relationship between immune cells and the TME (Zhang and Zhang,
2020). Based on our above findings regarding the close connection
between lactate metabolism and the immune system, we further
analyzed, through scRNA-seq and immunofluorescence histology
validation, the potential relationship between three key genes and the
T cells with the closest connection. In the single-cell data, gamma-delta
T cells may play a larger role among the three genes. In the validation
through immune fluorescence tissue analysis, we further validated the
relationship between the three genes andCD4 in detail, providing amore
comprehensive verification of our previous results.

The study found that in our model and gene verification results,
MPC1, COQ2, and ADAMTS13 play important roles in the
prognosis of CRC patients. We predict that these three key genes
in lactate metabolism can affect the clinical prognosis of patients by
influencing the immune microenvironment. T cells are considered
to be the most profound immune cells affecting immune response in
TME (Joyce and Fearon, 2015). Related studies on T cells and lactate
metabolism are also underway (Kumagai et al., 2022). The findings
of our study, based on multiple datasets, indicate that patients with
elevated levels of MPC1 and COQ2 exhibit improved prognoses,
whereas those with high levels of ADAMTS13 are associated with
poorer prognoses. Furthermore, high expression of MPC1 and
COQ2 corresponds to high expression of CD4, while high
expression of ADAMTS13 corresponds to low expression of
CD4. These findings suggest that the lactate key genes identified
in this study may impact tumor function and patient outcomes by
modulating T-cell subsets. However, the underlying communication
mechanism involved in this process warrants further investigation in
future studies.

FIGURE 8
Tissue immunofluorescence identification of the relationship between CD4+ T cells and key genes in lactate metabolism Fluorescent multiplex
immunohistochemistry for the relationship between COQ2, MPC1, ADAMTS13 and CD4+ T cell.
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Conclusion

In general, we utilized random forest approach to screen for
representative lactate metabolism genes and successfully employed
this method to consistently cluster CRC patients, revealing
significantly different patterns. We observed that immune cells in
the TME, particularly T cells, were closely correlated with the
expression of identified genes. The expression of these three key
genes and their relationship with CD4+ T cells were further
confirmed through qPCR and tissue immunofluorescence
analysis. Our results indicated that these key genes had potential
as novel prognostic markers for CRC. Additionally, we confirmed
the potential role of lactate metabolism genes and immune cells in
the TME, providing a basis for investigating the underlying
mechanisms of lactate metabolism on TME and for conducting
immunotherapy studies.
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