22 research outputs found

    Geometric frustration in the mixed layer pnictide oxides

    Get PDF
    We present results from a Monte Carlo investigation of a simple bilayer model with geometrically frustrated interactions similar to those found in the mixed layer pnictide oxides (Sr2Mn3Pn2O2,Pn=As,Sb).(Sr_{2}Mn_{3}Pn_{2}O_{2}, Pn=As,Sb). Our model is composed of two inequivalent square lattices with nearest neighbor intra- and interlayer interactions. We find a ground state composed of two independent N\'{e}el ordered layers when the interlayer exchange is an order of magnitude weaker than the intralayer exchange, as suggested by experiment. We observe this result independent of the number of layers in our model. We find evidence for local orthogonal order between the layers, but it occurs in regions of parameter space that are not experimentally realized. We conclude that frustration caused by nearest neighbor interactions in the mixed layer pnictide oxides is not sufficient to explain the long--range orthogonal order that is observed experimentally, and that it is likely that other terms (e.g., local anisotropies) in the Hamiltonian are required to explain the magnetic behavior.Comment: Revetex, 4 pages, 3 figures, to appear in the proceedings of "HFM 2000" (Waterloo, June 2000); submitted to Can. J. Phy

    Geometric frustration in the mixed layer pnictide oxides

    Full text link
    We present results from a Monte Carlo investigation of a simple bilayer model with geometrically frustrated interactions similar to those found in the mixed layer pnictide oxides (Sr2Mn3Pn2O2,Pn=As,Sb).(Sr_{2}Mn_{3}Pn_{2}O_{2}, Pn=As,Sb). Our model is composed of two inequivalent square lattices with nearest neighbor intra- and interlayer interactions. We find a ground state composed of two independent N\'{e}el ordered layers when the interlayer exchange is an order of magnitude weaker than the intralayer exchange, as suggested by experiment. We observe this result independent of the number of layers in our model. We find evidence for local orthogonal order between the layers, but it occurs in regions of parameter space that are not experimentally realized. We conclude that frustration caused by nearest neighbor interactions in the mixed layer pnictide oxides is not sufficient to explain the long--range orthogonal order that is observed experimentally, and that it is likely that other terms (e.g., local anisotropies) in the Hamiltonian are required to explain the magnetic behavior.Comment: Revetex, 4 pages, 3 figures, to appear in the proceedings of "HFM 2000" (Waterloo, June 2000); submitted to Can. J. Phy

    Ill-Behaved Convergence of a Model of the Gd3Ga5O12 Garnet Antiferromagnet with Truncated Magnetic Dipole-Dipole Interactions

    Full text link
    Previous studies have found that calculations which consider long-range magnetic dipolar interactions truncated at a finite cut-off distance Rc predict spurious (unphysical) long-range ordered phases for Ising and Heisenberg systems on the pyrochlore lattice. In this paper we show that, similar to these two cases, calculations that use truncated dipolar interactions to model the Gd3Ga5O12 garnet antiferromagnet also predict unphysical phases with incommensurate ordering wave vector q_ord that is very sensitive to the dipolar cut-off distance Rc.Comment: 7 pages, 2 color figures; Proceedings of the HFM2006 conference, to appear in a special issue of J. Phys.: Condens. Matte

    Quantum spin fluctuations in the dipolar Heisenberg-like rare earth pyrochlores

    Full text link
    The magnetic pyrochlore oxide materials of general chemical formula R2Ti2O7 and R2Sn2O7 (R = rare earth) display a host of interesting physical behaviours depending on the flavour of rare earth ion. These properties depend on the value of the total magnetic moment, the crystal field interactions at each rare earth site and the complex interplay between magnetic exchange and long-range dipole-dipole interactions. This work focuses on the low temperature physics of the dipolar isotropic frustrated antiferromagnetic pyrochlore materials. Candidate magnetic ground states are numerically determined at zero temperature and the role of quantum spin fluctuations around these states are studied using a Holstein-Primakoff spin wave expansion to order 1/S. The results indicate the strong stability of the proposed classical ground states against quantum fluctuations. The inclusion of long range dipole interactions causes a restoration of symmetry and a suppression of the observed anisotropy gap leading to an increase in quantum fluctuations in the ground state when compared to a model with truncated dipole interactions. The system retains most of its classical character and there is little deviation from the fully ordered moment at zero temperature.Comment: Latex2e, 18 pages, 4 figures, IOP forma

    The Spin Liquid State of the Tb2Ti2O7 Pyrochlore Antiferromagnet: A Puzzling State of Affairs

    Full text link
    The pyrochlore antiferromagnet Tb2Ti2O7 has proven to be an enigma to experimentalists and theorists working on frustrated magnetic systems. The experimentally determined energy level structure suggests a local Ising antiferromagnet at low temperatures, T < 10 K. An appropriate model then predicts a long-range ordered Q = 0 state below approximately 2 K. However, muon spin resonance experiments reveal a paramagnetic structure down to tens of milli-Kelvin. The importance of fluctuations out of the ground state effective Ising doublet has been recently understood, for the measured paramagnetic correlations can not be described without including the higher crystal field states. However, these fluctuations treated within the random phase approximation (RPA) fail to account for the lack of ordering in this system below 2 K. In this work, we briefly review the experimental evidence for the collective paramagnetic state of Tb2Ti2O7. The basic theoretical picture for this system is discussed, where results from classical spin models are used to motivate the investigation of quantum effects to lowest order via the RPA. Avenues for future experimental and theoretical work on Tb2Ti2O7 are presented.Comment: Latex2e,6 pages, IOP format, introduction shortened and other minor corrections, replaced with published version in the Proceedings of the Highly Frustrated Magnetism 2003 Conference, Grenobl

    Critical phenomena in a highly constrained classical spin system: Neel ordering from the Coulomb phase

    Full text link
    Many classical, geometrically frustrated antiferromagnets have macroscopically degenerate ground states. In a class of three-dimensional systems, the set of degenerate ground states has power-law correlations and is an example of a Coulomb phase. We investigate Neel ordering from such a Coulomb phase, induced by weak additional interactions that lift the degeneracy. We show that the critical point belongs to a universality class that is different from the one for the equivalent transition out of the paramagnetic phase, and that it is characterised by effective long-range interactions; alternatively, ordering may be discontinuous. We suggest that a transition of this type may be realised by applying uniaxial stress to a pyrochlore antiferromagnet.Comment: 4 pages, 3 figure

    Codimension-2 black hole solutions on a thin 3-brane and their extension into the bulk

    Get PDF
    In this talk we discuss black hole solutions in six-dimensional gravity with a Gauss- Bonnet term in the bulk and an induced gravity term on a thin 3-brane of codimension-2. It is shown that these black holes can be localized on the 3-brane, and they can further be extended into the bulk by a warp function. These solutions have regular horizons and no other curvature singularities appear apart from the string-like ones. The projection of the Gauss-Bonnet term on the brane imposes a constraint relation which requires the presence of matter in the extra dimensions, in order to sustain our solutions.Comment: 9 pages, Talk given at the conference "NEB-XIII:Recent developments in gravity" held at Thessaloniki, Greece in June 200

    Proposal for a [111] Magnetization Plateau in the Spin Liquid State of Tb2Ti2O7

    Full text link
    Despite a Curie-Weiss temperature θCW∼−14\theta_{\rm CW} \sim -14 K, the Tb2Ti2O7 pyrochlore magnetic material lacks long range magnetic order down to at least T∗≈50T^*\approx 50 mK. It has recently been proposed that the low temperature collective paramagnetic or spin liquid regime of this material may be akin to a spin ice state subject to both thermal and quantum fluctuations −- a {\it quantum spin ice} (QSI) of sorts. Here we explore the effect of a magnetic field B{\bm B} along the [111][111] direction on the QSI state. To do so, we investigate the magnetic properties of a microscopic model of Tb2Ti2O7 in an independent tetrahedron approximation in a finite B{\bm B} along [111][111]. Such a model describes semi-quantitatively the collective paramagnetic regime where nontrivial spin correlations start to develop at the shortest lengthscale, that is over a single tetrahedron, but where no long range order is yet present. Our results show that a magnetization plateau develops at low temperatures as the system develops B=0{\bm B}=0 ferromagnetic spin-ice-like "two-in/two-out" correlations at the shortest lengthscale. From these results, we are led to propose that the observation of such a [111] magnetization plateau in Tb2Ti2O7 would provide compelling evidence for a QSI at B=0{\bm B}=0 in this material and help guide the development of a theory for the origin of its spin liquid state.Comment: 6 pages, 3 figure

    Refrustration and competing orders in the prototypical Dy2Ti2O7 spin ice material

    Get PDF
    Spin ices, frustrated magnetic materials analogous to common water ice, are exemplars of high frustration in three dimensions. Recent experimental studies of the low-temperature properties of the paradigmatic Dy2_2Ti2_2O7_7 spin ice material, in particular whether the predicted transition to long-range order occurs, raise questions as per the currently accepted microscopic model of this system. In this work, we combine Monte Carlo simulations and mean-field theory calculations to analyze data from magnetization, elastic neutron scattering and specific heat measurements on Dy2_2Ti2_2O7_7. We also reconsider the possible importance of the nuclear specific heat, CnucC_{\rm nuc}, in Dy2_2Ti2_2O7_7. We find that CnucC_{\rm nuc} is not entirely negligible below a temperature ∼0.5\sim 0.5 K and must be taken into account in a quantitative analysis of the calorimetric data of this compound below that temperature. We find that small effective exchange interactions compete with the magnetostatic dipolar interaction responsible for the main spin ice phenomenology. This causes an unexpected "refrustration" of the long-range order that would be expected from the incompletely self-screened dipolar interaction and which positions the material at the boundary between two competing classical long-range ordered ground states. This allows for the manifestation of new physical low-temperature phenomena in Dy2_2Ti2_2O7_7, as exposed by recent specific heat measurements. We show that among the four most likely causes for the observed upturn of the specific heat at low temperature -- an exchange-induced transition to long-range order, quantum non-Ising (transverse) terms in the effective spin Hamiltonian, the nuclear hyperfine contribution and random disorder -- only the last appears to be reasonably able to explain the calorimetric data.Comment: 24 pages, 18 figures. To appear in Physical Review

    Theory of paramagnetic scattering in highly frustrated magnets with long-range dipole-dipole interactions: The case of the Tb2Ti2O7, pyrochlore antiferromagnet

    Full text link
    Highly frustrated antiferromagnets composed of magnetic rare-earth moments are currently attracting much experimental and theoretical interest. Rare-earth ions generally have small exchange interactions and large magnetic moments. This makes it necessary to understand in detail the role of long-range magnetic dipole-dipole interactions in these systems, in particular in the context of spin-spin correlations that develop in the paramagnetic phase, but are often unable to condense into a conventional long-range magnetic ordered phase. This scenario is most dramatically emphasized in the frustrated pyrochlore antiferromagnet material Tb2Ti207 which does not order down to 50 mK despite an antiferromagnetic Curie-Weiss temperature Tcw ~ -20 K. In this paper we report results from mean-field theory calculations of the paramagnetic elastic neutron-scattering in highly frustrated magnetic systems with long-range dipole-dipole interactions, focusing on the Tb2Ti207 system. Modeling Tb2Ti207 as an antiferromagnetic Ising pyrochlore, we find that the mean-field paramagnetic scattering is inconsistent with the experimentally observed results. Through simple symmetry arguments we demonstrate that the observed paramagnetic correlations in Tb2Ti207 are precluded from being generated by any spin Hamiltonian that considers only Ising spins, but are qualitatively consistent with Heisenberg-like moments. Explicit calculations of the paramagnetic scattering pattern for both Ising and Heisenberg models, which include finite single-ion anisotropy, support these claims. We offer suggestions for reconciling the need to restore spin isotropy with the Ising like structure suggested by the single-ion properties of Tb3+.Comment: Revtex4, 18 pages, 3 eps figures (2 color figures). Change in title and emphasis on Tb2Ti2O7 only. Spin-ice material removed, to appear in a later publicatio
    corecore