56 research outputs found
Regulation of Organelle Movement in Melanophores by Protein Kinase A (PKA), Protein Kinase C (PKC), and Protein Phosphatase 2A (PP2A)
We used melanophores, cells specialized for regulated organelle transport, to study signaling pathways involved in the regulation of transport. We transfected immortalized Xenopus melanophores with plasmids encoding epitope-tagged inhibitors of protein phosphatases and protein kinases or control plasmids encoding inactive analogues of these inhibitors. Expression of a recombinant inhibitor of protein kinase A (PKA) results in spontaneous pigment aggregation. α-Melanocyte-stimulating hormone (MSH), a stimulus which increases intracellular cAMP, cannot disperse pigment in these cells. However, melanosomes in these cells can be partially dispersed by PMA, an activator of protein kinase C (PKC). When a recombinant inhibitor of PKC is expressed in melanophores, PMA-induced pigment dispersion is inhibited, but not dispersion induced by MSH. We conclude that PKA and PKC activate two different pathways for melanosome dispersion. When melanophores express the small t antigen of SV-40 virus, a specific inhibitor of protein phosphatase 2A (PP2A), aggregation is completely prevented. Conversely, overexpression of PP2A inhibits pigment dispersion by MSH. Inhibitors of protein phosphatase 1 and protein phosphatase 2B (PP2B) do not affect pigment movement. Therefore, melanosome aggregation is mediated by PP2A
Xenobiotic-induced activation of human aryl hydrocarbon receptor target genes in Drosophila is mediated by the epigenetic chromatin modifiers
Aryl hydrocarbon receptor (AHR) is the key transcription factor that controls animal development and various adaptive processes. The AHR\u27s target genes are involved in biodegradation of endogenous and exogenous toxins, regulation of immune response, organogenesis, and neurogenesis. Ligand binding is important for the activation of the AHR signaling pathway. Invertebrate AHR homologs are activated by endogenous ligands whereas vertebrate AHR can be activated by both endogenous and exogenous ligands (xenobiotics). Several studies using mammalian cultured cells have demonstrated that transcription of the AHR target genes can be activated by exogenous AHR ligands, but little is known about the effects of AHR in a living organism. Here, we examined the effects of human AHR and its ligands using transgenic Drosophila lines with an inducible human AhR gene. We found that exogenous AHR ligands can increase as well as decrease the transcription levels of the AHR target genes, including genes that control proliferation, motility, polarization, and programmed cell death. This suggests that AHR activation may affect the expression of gene networks that could be critical for cancer progression and metastasis. Importantly, we found that AHR target genes are also controlled by the enzymes that modify chromatin structure, in particular components of the epigenetic Polycomb Repressive complexes 1 and 2. Since exogenous AHR ligands (alternatively - xenobiotics) and small molecule inhibitors of epigenetic modifiers are often used as pharmaceutical anticancer drugs, our findings may have significant implications in designing new combinations of therapeutic treatments for oncological diseases. © Akishina et al
Radiation Induces Distinct Changes in Defined Subpopulations of Neural Stem and Progenitor Cells in the Adult Hippocampus
While irradiation can effectively treat brain tumors, this therapy also causes cognitive impairments, some of which may stem from the disruption of hippocampal neurogenesis. To study how radiation affects neurogenesis, we combine phenotyping of subpopulations of hippocampal neural stem and progenitor cells with double- and triple S-phase labeling paradigms. Using this approach, we reveal new features of division, survival, and differentiation of neural stem and progenitor cells after exposure to gamma radiation. We show that dividing neural stem cells, while susceptible to damage induced by gamma rays, are less vulnerable than their rapidly amplifying progeny. We also show that dividing stem and progenitor cells that survive irradiation are suppressed in their ability to replicate 0.5–1 day after the radiation exposure. Suppression of division is also observed for cells that entered the cell cycle after irradiation or were not in the S phase at the time of exposure. Determining the longer term effects of irradiation, we found that 2 months after exposure, radiation-induced suppression of division is partially relieved for both stem and progenitor cells, without evidence for compensatory symmetric divisions as a means to restore the normal level of neurogenesis. By that time, most mature young neurons, born 2–4 weeks after the irradiation, still bear the consequences of radiation exposure, unlike younger neurons undergoing early stages of differentiation without overt signs of deficient maturation. Later, 6 months after an exposure to 5 Gy, cell proliferation and neurogenesis are further impaired, though neural stem cells are still available in the niche, and their pool is preserved. Our results indicate that various subpopulations of stem and progenitor cells in the adult hippocampus have different susceptibility to gamma radiation, and that neurogenesis, even after a temporary restoration, is impaired in the long term after exposure to gamma rays. Our study provides a framework for investigating critical issues of neural stem cell maintenance, aging, interaction with their microenvironment, and post-irradiation therapy
Neuronal nitric oxide synthase contributes to the regulation of hematopoiesis
Nitric oxide (NO) signaling is important for the regulation of hematopoiesis. However, the role of individual NO synthase (NOS) isoforms is unclear. Our results indicate that the neuronal NOS isoform (nNOS) regulates hematopolesis in vitro and in vivo. nNOS is expressed in adult bone marrow and fetal liver and is enriched in stromal cells. There is a strong correlation between expression of nNOS in a panel of stromal cell lines established from bone marrow and fetal liver and the ability of these cell lines to support hematopoietic stem cells; furthermore, NO donor can further increase this ability. The number of colonies generated in vitro from the bone marrow and spleen of nNOS-null mutants is increased relative to wild-type or inducible- or endothelial NOS knockout mice. These results describe a new role for nNOS beyond its action in the brain and muscle and suggest a model where nNOS, expressed in stromal cells, produces NO which acts as a paracrine regulator of hematopoietic stem cells
Nestin-GFP Transgene Reveals Neural Precursor Cells in Adult Skeletal Muscle
Background: Therapy for neural lesions or degenerative diseases relies mainly on finding transplantable active precursor cells. Identifying them in peripheral tissues accessible for biopsy, outside the central nervous system, would circumvent the serious immunological and ethical concerns impeding cell therapy. Methodology/Principal Findings: In this study, we isolated neural progenitor cells in cultured adult skeletal muscle from transgenic mice in which nestin regulatory elements control GFP expression. These cells also expressed the early neural marker Tuj1 and light and heavy neurofilament but not S100b, indicating that they express typical neural but not Schwann cell markers. GFP+/Tuj1+ cells were also negative for the endothelial and pericyte markers CD31 and a-smooth muscle actin, respectively. We established their a) functional response to glutamate in patch-clamp recordings; b) interstitial mesenchymal origin; c) replicative capacity; and d) the environment necessary for their survival after fluorescenceactivated cell sorting. Conclusions/Significance: We propose that the decline in nestin-GFP expression in muscle progenitor cells and its persistence in neural precursor cells in muscle cultures provide an invaluable tool for isolating a population of predifferentiated neural cells with therapeutic potential
DALMATIAN: An Algorithm for Automatic Cell Detection and Counting in 3D
Current 3D imaging methods, including optical projection tomography, light-sheet microscopy, block-face imaging, and serial two photon tomography enable visualization of large samples of biological tissue. Large volumes of data obtained at high resolution require development of automatic image processing techniques, such as algorithms for automatic cell detection or, more generally, point-like object detection. Current approaches to automated cell detection suffer from difficulties originating from detection of particular cell types, cell populations of different brightness, non-uniformly stained, and overlapping cells. In this study, we present a set of algorithms for robust automatic cell detection in 3D. Our algorithms are suitable for, but not limited to, whole brain regions and individual brain sections. We used watershed procedure to split regional maxima representing overlapping cells. We developed a bootstrap Gaussian fit procedure to evaluate the statistical significance of detected cells. We compared cell detection quality of our algorithm and other software using 42 samples, representing 6 staining and imaging techniques. The results provided by our algorithm matched manual expert quantification with signal-to-noise dependent confidence, including samples with cells of different brightness, non-uniformly stained, and overlapping cells for whole brain regions and individual tissue sections. Our algorithm provided the best cell detection quality among tested free and commercial software
Proliferation of neural stem cells derived from FDB skeletal muscle.
<p><b>A.</b> Unsorted nestin-GFP+ and Tuj1+ cells from FDB muscle were exposed to EdU on culture day 7. Nuclear DNA was stained with Hoechst 33342. Scale bar  = 100 µm. <b>B.</b> Percent of nestin-GFP+/Tuj1+ cells exhibiting EdU incorporation at days 7, 10, and 14 in culture. The fourth column corresponds to nestin-GFP+ cells sorted on culture day 7, cultured for 48 hours, and fixed (n = 3 preparations). EdU (10 µM) was administered 2 hours before cells were fixed. Data are mean ± SEM.</p
Nestin-GFP+ cells from FDB muscle in culture.
<p><b>A.</b> Cells were grown for 14 days and fixed at various times (1, 4, 7 and 14 days). Nestin-GFP, Tuj1, and Hoechst 33342 were merged with phase contrast. Scale bar  = 100 µm. <b>B.</b> Relative proportion of Tuj1+ and MyoD+ cells at different times in the nestin-GFP+ population. Notice the disappearance of MyoD expression at day 5 and the progressive increase in Tuj1+ cells to become almost the only population by days 7 and 14 in culture.</p
Glutamate-evoked membrane currents in neural multipolar cells under voltage-clamp.
<p><b>A.</b> Typical inward currents in response to three 500 mM L-glutamate pulses in neural cells from FDB muscle culture. The membrane potential was held at −60 mV. Glutamate pulses are depicted above the current traces. The dashed lines represent baseline. <b>B.</b> Response to glutamate application for 1 s and desensitization during agonist application. <b>C.</b> Glutamate-evoked current as a function of culture time (days 4–14). Data points represent individual cells.</p
- …