48 research outputs found

    Diatom-based evidence for abrupt climate changes during the Late Glacial in the Southern Carpathian Mountains

    Get PDF
    Abstract A high-resolution paleolimnological record from Lake Brazi (TDB-1; 45°23’47″N, 22°54’06″E, 1740 m a.s.l.), a small, glacial lake in the Retezat (South Carpathian Mountains, Romania) provides a sensitive record of the impacts of late glacial climatic change on siliceous algal assemblages. The sequence, ranging from 15,700 cal yr BP to 9500 cal yr BP, suggests that the most significant changes in diatom assemblages took place at 12,800 and 10,400 cal yr BP, when alkaliphilous fragilarioid taxa were replaced by acidophilous diatoms. Altogether eight zones were distinguished with sharp and rapid changes of diatom assemblages. The paper discusses the application of siliceous algae in multi-proxy paleolimnological analyses, demonstrates the advantages and disadvantages of this proxy and presents the story of floristic discovery of unique diatom assemblages, the closest recent analogs of which are found in the arctic region

    Radiocarbon chronology of glacial lake sediments in the Retezat Mts (South Carpathians, Romania): a window to Late Glacial and Holocene climatic and paleoenvironmental changes

    Get PDF
    Abstract the Retezat Mountains, this study discusses radiocarbon chronology and sediment accumulation rate changes in two sediment profiles in relation to lithostratigraphy, organic content, biogenic silica and major pollenstratigraphic changes. A total of 25 radiocarbon dates were obtained from sediments of two lakes, Lake Brazi (TDB-1; 1740 m a.s.l.) and Lake Gales (Gales-3; 1990 m a.s.l.). Age-depth modeling was performed on TDB-1 using calibrated age ranges from BCal and various curve-fitting methods in psimpoll. Our results suggest that sediment accumulation began between 15,124–15,755 cal yr BP in both lakes and was continuous throughout the Late Glacial and Holocene. We demonstrated that local ecosystem productivity showed delayed response to Late Glacial and Early Holocene climatic changes in the subalpine and alpine zones most likely attributable to the cooling effect of remnant glaciers and meltwater input. However, regional vegetation response was without time lag and indicated forestation and warming at 14,450 and 11,550 cal yr BP, and cooling at ca. 12,800 cal yr BP. In the Holocene one major shift was detected, starting around 6300 cal yr BP and culminating around 5200 cal yr BP. The various proxies suggested summer cooling, shorter duration of the winter ice-cover season and/or increasing size of the water body, probably in response to increasing available moisture

    First record of Gomphonema lacunicola Patrick et Freese (Bacillariophyta) from the Pâreng Mts (Southern Carpathians, Romania)

    Get PDF
    Here we report and document the occurrence of the diatom Gomphonema lacunicola Patrick et Freese 1961 from the Pâreng Mts of the Carpathian Mountains, Romania. This observation was made within the framework of a systematic sampling campaign and analyses that were conducted in the Southern Carpathians, covering 40 mountain lakes for discovering the cladoceran fauna and diatom flora of this region between 2012 and 2014. G. lacunicola was found only in one of the 40 lakes, namely in Lake Câlcescu, where it was extremely rare, but the characteristic feature of the lake promoted the presence of the species. Lake Câlcescu is a subalpine lake, located 1,934 m a.s.l. This is the first record of this diatom species in Romania

    Holocene treeline and timberline changes in the South Carpathians (Romania): Climatic and anthropogenic drivers on the southern slopes of the Retezat Mountains

    Get PDF
    Two high-altitude lake-sediment sequences (Lake Lia, 1910 m a.s.l. and Lake Bucura, 2040 m a.s.l.) from the Retezat Mountains (South Carpathians, Romania) were analysed using multi-proxy methods to study responses of treeline, timberline and alpine/subalpine vegetation to climate change and human impact during the past 16,000 years. Woody species (Pinus mugo, Pinus cembra, Picea abies and Juniperus communis) reached Lake Lia between 12,000 and 11,800 cal. yr BP, whereas P. mugo colonised the shores of Lake Bucura at 9600 cal. yr BP. Lake Lia was in the timberline ecotone between 8000 and 3200 cal. yr BP, in semi-open P. cembra and Picea abies woodland, probably mixed with P. mugo on the steeper slopes. Lake Bucura was surrounded by the upper part of the krummholz zone during the mid-Holocene. The increase in P. cembra after c. 6000 cal. yr BP around Lake Lia suggests that the composition of the timberline forest changed. The disappearance of P. cembra and Picea abies around Lake Lia at ~3000 cal. yr BP reflects descent of the timberline. A large mean July temperature decline between 3300 and 2800 cal. yr BP may have driven or at least contributed to the descent of the Picea abies?P. cembra forests. An increase in human indicator pollen types in Lake Bucura around 4200 cal. yr BP may reflect human impact in the naturally open alpine zone in the Late Bronze Age. In contrast, human impact likely appeared considerably later, around 2650 cal. yr BP (Early Iron Age) around Lake Lia in the upper subalpine zone. Human impact likely intensified after 2200 cal. yr BP at both sites that resulted in the lowering of the krummholz zone. We conclude that climate change and human impact both played an important role in the lowering of the treeline and timberline in the late-Holocene
    corecore