6 research outputs found

    Distribution pattern of antibiotic resistance genes in Escherichia coli isolated from colibacillosis cases in broiler farms of Egypt

    Get PDF
    Background and Aim: Multidrug resistance (MDR) of Escherichia coli has become an increasing concern in poultry farming worldwide. However, E. coli can accumulate resistance genes through gene transfer. The most problematic resistance mechanism in E. coli is the acquisition of genes encoding broad-spectrum β-lactamases, known as extended-spectrum β-lactamases, that confer resistance to broad-spectrum cephalosporins. Plasmid-mediated quinolone resistance genes (conferring resistance to quinolones) and mcr-1 genes (conferring resistance to colistin) also contribute to antimicrobial resistance. This study aimed to investigate the prevalence of antimicrobial susceptibility and to detect β-lactamase and colistin resistance genes of E. coli isolated from broiler farms in Egypt. Materials and Methods: Samples from 938 broiler farms were bacteriologically examined for E. coli isolation. The antimicrobial resistance profile was evaluated using disk diffusion, and several resistance genes were investigated through polymerase chain reaction amplification. Results: Escherichia coli was isolated and identified from 675/938 farms (72%) from the pooled internal organs (liver, heart, lung, spleen, and yolk) of broilers. Escherichia coli isolates from the most recent 3 years (2018–2020) were serotyped into 13 serotypes; the most prevalent serotype was O125 (n = 8). The highest phenotypic antibiotic resistance profiles during this period were against ampicillin, penicillin, tetracycline, and nalidixic acid. Escherichia coli was sensitive to clinically relevant antibiotics. Twenty-eight selected isolates from the most recent 3 years (2018–2020) were found to have MDR, where the prevalence of the antibiotic resistance genes ctx, tem, and shv was 46% and that of mcr-1 was 64%. Integrons were found in 93% of the isolates. Conclusion: The study showed a high prevalence of E. coli infection in broiler farms associated with MDR, which has a high public health significance because of its zoonotic relevance. These results strengthen the application of continuous surveillance programs

    Bio-fabricated zinc oxide nanoparticles mediated by endophytic fungus Aspergillus sp. SA17 with antimicrobial and anticancer activities: in vitro supported by in silico studies

    Get PDF
    IntroductionIn recent years, the world’s attention has been drawn to antimicrobial resistance (AMR) because to the frightening prospect of growing death rates. Nanomaterials are being investigated due to their potential in a wide range of technical and biological applications.MethodsThe purpose of this study was to biosynthesis zinc oxide nanoparticles (ZnONPs) using Aspergillus sp. SA17 fungal extract, followed by characterization of the produced nanoparticles (NP) using electron microscopy (TEM and SEM), UV-analysis, X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FT-IR).Results and DiscussionThe HR-TEM revealed spherical nanoparticles with an average size of 7.2 nm, and XRD validated the crystalline nature and crystal structure features of the generated ZnONPs, while the zeta potential was 18.16 mV, indicating that the particles’ surfaces are positively charged. The FT-IR was also used to identify the biomolecules involved in the synthesis of ZnONPs. The antibacterial and anticancer properties of both the crude fungal extract and its nano-form against several microbial strains and cancer cell lines were also investigated. Inhibition zone diameters against pathogenic bacteria ranged from 3 to 13 mm, while IC50 values against cancer cell lines ranged from 17.65 to 84.55 M. Additionally, 33 compounds, including flavonoids, phenolic acids, coumarins, organic acids, anthraquinones, and lignans, were discovered through chemical profiling of the extract using UPLC-QTOF-MS/MS. Some molecules, such pomiferin and glabrol, may be useful for antibacterial purposes, according to in silico study, while daidzein 4’-sulfate showed promise as an anti-cancer metabolite

    Antibiotic resistance and extended-spectrum β-lactamase in Escherichia coli isolates from imported 1-day-old chicks, ducklings, and turkey poults

    Get PDF
    Aim: Antimicrobial resistance is a global health threat. This study investigated the prevalence of Escherichia coli in imported 1-day-old chicks, ducklings, and turkey poults. Materials and Methods: The liver, heart, lungs, and yolk sacs of 148 imported batches of 1-day-old flocks (chicks, 45; ducklings, 63; and turkey poults, 40) were bacteriologically examined for the presence of E. coli. Results: We isolated 38 E. coli strains from 13.5%, 6.7%, and 5.4% of imported batches of 1-day-old chicks, ducklings, and turkey poults, respectively. They were serotyped as O91, O125, O145, O78, O44, O36, O169, O124, O15, O26, and untyped in the imported chicks; O91, O119, O145, O15, O169, and untyped in the imported ducklings; and O78, O28, O29, O168, O125, O158, and O115 in the imported turkey poults. The E. coli isolates were investigated for antibiotic resistance against 16 antibiotics using the disk diffusion method and were found resistant to cefotaxime (60.5%), nalidixic acid (44.7%), tetracycline (44.7%), and trimethoprim-sulfamethoxazole (42.1%). The distribution of extended-spectrum β-lactamase (ESBL) and ampC β-lactamase genes was blaTEM (52.6%), blaSHV (28.9%), blaCTX-M (39.5%), blaOXA-1 (13.1%), and ampC (28.9%). Conclusion: Imported 1-day-old poultry flocks may be a potential source for the dissemination of antibiotic-resistant E. coli and the ESBL genes in poultry production

    Herbal Oils and Probiotic Efficacy in Rabbits Challenged with Multidrug-Resistant Escherichia coli

    No full text
    Colibacillosis is a common infectious bacterial disease that can cause enteritis and high mortality in young rabbits, threatening the breeding industry. This work was performed to express some virulence-determining genes and antimicrobial resistance patterns of isolated E. coli and to study the efficacy of herbal oils and/or probiotic on reducing E. coli infection in rabbits. Vaginal swabs and semen samples were collected from rabbits with reproductive problems (farm 1) and anal swabs were collected from rabbits with diarrhea (farm 2) in Ismailia Governorate, Egypt. Samples were subjected for bacterial identification, antibiogram-testing and molecular monitoring of iss and eaeA virulence genes. An experiment was performed in which 54 weaned California rabbits were divided into 6 equal groups, negative control group (G1), non-infected treated with probiotic and both fennel and moringa oils (G2), Infected and treated with probiotic, fennel and moringa oils (G3), treated with probiotic only (G4), treated with colistin sulfate (G5) and Positive control (G6). Infected groups (G3, G4, G5 and G6) were challenged orally with E. coli (1x107 CFU). The detection of E. coli was 15.3% (2/13) and 62.5% (10/16) in farm (1) and (2) respectively. The isolated E. coli was multidrug-resistant (MDR), carrying virulence genes iss and eaeA, with prevalence of 100% (12/12) and 50% (6 /12) respectively. Clinical symptoms were prominent in the experiment E. coli infected untreated group (6), with the least evidence in group (5). The E. coli colony counts were significantly higher in group (6) while rabbits in group (3) had significantly higher body weights compared to infected groups. Thus, we concluded that, the use of two herbal oils and probiotics were able to reduce mortality rates, clinical signs, and the total E. coli count in experimentally infected rabbits

    Effect of Dietary Moringa oleifera Leaves Nanoparticles on Growth Performance, Physiological, Immunological Responses, and Liver Antioxidant Biomarkers in Nile tilapia (Oreochromis niloticus) against Zinc Oxide Nanoparticles Toxicity

    No full text
    The current study addresses the influence of Moringa oleifera leaves nanoparticles (MO-NPs) on growth, biochemical, immunological, and hepatic antioxidant alterations induced by zinc oxide nanoparticles toxicity in Nile tilapia (O. niloticus). Fish (N = 180) were divided into four groups with replicates. The first one was set as a control group and the second group was fed an MO-NPs-enriched diet (2.5 g/kg diet). The third group was exposed to 8 mg/L ZnO-NPs, while the forth group was exposed to 8 mg/L ZnO-NPs and fed on MO-NPs (2.5 g/kg diet) for 2 months. Exposure of O. niloticus to 8 mg/L ZnO-NPs induced the following consequences: a sharp decrease in the growth parameters; a marked increment in the biochemical biomarkers (glucose, cortisol, and liver enzymes (ALT, AST, ALP); a significant increase in serum renal products, urea and creatinine, cholesterol, and LDH levels. Nonetheless, the dietary MO-NPs supplementation for 2 months significantly alleviated the ZnO-NPs toxicity and significantly enhanced the growth indices, plus normalizing the physio-biochemical levels in the exposed group to ZnO-NPs toxicity to reach the levels of the control group. The MO-NPs markedly improved hepatic antioxidant biomarkers, MDA, and TAC, while, decreasing SOD, CAT, and GSH levels to be near the control values. Moreover, supplemented fish in MO-NPs (2.5 g/kg diet) and exposed to ZnO-NPs provided a remarkable increase in the immune profile (respiratory burst (RB) activity, lysozyme, and total immunoglobulins (IgM)) compared to the ZnO-NPs-intoxicated group. Based on the findings of the study, the exposed O. niloticus to ZnO-NPs were immune-antioxidant-depressed, besides showing growth retardation, and physio-biochemical alterations. On the other hand, a supplemented diet with MO-NPs is a novel approach to ameliorate ZnO-NPs toxicity for sustaining aquaculture and correspondingly protecting human health

    Effect of Dietary <i>Moringa oleifera</i> Leaves Nanoparticles on Growth Performance, Physiological, Immunological Responses, and Liver Antioxidant Biomarkers in Nile tilapia (<i>Oreochromis niloticus</i>) against Zinc Oxide Nanoparticles Toxicity

    No full text
    The current study addresses the influence of Moringa oleifera leaves nanoparticles (MO-NPs) on growth, biochemical, immunological, and hepatic antioxidant alterations induced by zinc oxide nanoparticles toxicity in Nile tilapia (O. niloticus). Fish (N = 180) were divided into four groups with replicates. The first one was set as a control group and the second group was fed an MO-NPs-enriched diet (2.5 g/kg diet). The third group was exposed to 8 mg/L ZnO-NPs, while the forth group was exposed to 8 mg/L ZnO-NPs and fed on MO-NPs (2.5 g/kg diet) for 2 months. Exposure of O. niloticus to 8 mg/L ZnO-NPs induced the following consequences: a sharp decrease in the growth parameters; a marked increment in the biochemical biomarkers (glucose, cortisol, and liver enzymes (ALT, AST, ALP); a significant increase in serum renal products, urea and creatinine, cholesterol, and LDH levels. Nonetheless, the dietary MO-NPs supplementation for 2 months significantly alleviated the ZnO-NPs toxicity and significantly enhanced the growth indices, plus normalizing the physio-biochemical levels in the exposed group to ZnO-NPs toxicity to reach the levels of the control group. The MO-NPs markedly improved hepatic antioxidant biomarkers, MDA, and TAC, while, decreasing SOD, CAT, and GSH levels to be near the control values. Moreover, supplemented fish in MO-NPs (2.5 g/kg diet) and exposed to ZnO-NPs provided a remarkable increase in the immune profile (respiratory burst (RB) activity, lysozyme, and total immunoglobulins (IgM)) compared to the ZnO-NPs-intoxicated group. Based on the findings of the study, the exposed O. niloticus to ZnO-NPs were immune-antioxidant-depressed, besides showing growth retardation, and physio-biochemical alterations. On the other hand, a supplemented diet with MO-NPs is a novel approach to ameliorate ZnO-NPs toxicity for sustaining aquaculture and correspondingly protecting human health
    corecore