196 research outputs found
Triglyceride-containing lipoprotein sub-fractions and risk of coronary heart disease and stroke: A prospective analysis in 11,560 adults
AIMS: Elevated low-density lipoprotein cholesterol (LDL-C) is a risk factor for cardiovascular disease; however, there is uncertainty about the role of total triglycerides and the individual triglyceride-containing lipoprotein sub-fractions. We measured 14 triglyceride-containing lipoprotein sub-fractions using nuclear magnetic resonance and examined associations with coronary heart disease and stroke. METHODS: Triglyceride-containing sub-fraction measures were available in 11,560 participants from the three UK cohorts free of coronary heart disease and stroke at baseline. Multivariable logistic regression was used to estimate the association of each sub-fraction with coronary heart disease and stroke expressed as the odds ratio per standard deviation increment in the corresponding measure. RESULTS: The 14 triglyceride-containing sub-fractions were positively correlated with one another and with total triglycerides, and inversely correlated with high-density lipoprotein cholesterol (HDL-C). Thirteen sub-fractions were positively associated with coronary heart disease (odds ratio in the range 1.12 to 1.22), with the effect estimates for coronary heart disease being comparable in subgroup analysis of participants with and without type 2 diabetes, and were attenuated after adjustment for HDL-C and LDL-C. There was no evidence for a clear association of any triglyceride lipoprotein sub-fraction with stroke. CONCLUSIONS: Triglyceride sub-fractions are associated with increased risk of coronary heart disease but not stroke, with attenuation of effects on adjustment for HDL-C and LDL-C
Validation of lipid-related therapeutic targets for coronary heart disease prevention using human genetics
Drug target Mendelian randomization (MR) studies use DNA sequence variants in or near a gene encoding a drug target, that alter the target's expression or function, as a tool to anticipate the effect of drug action on the same target. Here we apply MR to prioritize drug targets for their causal relevance for coronary heart disease (CHD). The targets are further prioritized using independent replication, co-localization, protein expression profiles and data from the British National Formulary and clinicaltrials.gov. Out of the 341 drug targets identified through their association with blood lipids (HDL-C, LDL-C and triglycerides), we robustly prioritize 30 targets that might elicit beneficial effects in the prevention or treatment of CHD, including NPC1L1 and PCSK9, the targets of drugs used in CHD prevention. We discuss how this approach can be generalized to other targets, disease biomarkers and endpoints to help prioritize and validate targets during the drug development process
NMR metabolomic modeling of age and lifespan: A multicohort analysis.
Metabolomic age models have been proposed for the study of biological aging, however, they have not been widely validated. We aimed to assess the performance of newly developed and existing nuclear magnetic resonance spectroscopy (NMR) metabolomic age models for prediction of chronological age (CA), mortality, and age-related disease. Ninety-eight metabolic variables were measured in blood from nine UK and Finnish cohort studies (N ≈31,000 individuals, age range 24-86 years). We used nonlinear and penalized regression to model CA and time to all-cause mortality. We examined associations of four new and two previously published metabolomic age models, with aging risk factors and phenotypes. Within the UK Biobank (N ≈102,000), we tested prediction of CA, incident disease (cardiovascular disease (CVD), type-2 diabetes mellitus, cancer, dementia, and chronic obstructive pulmonary disease), and all-cause mortality. Seven-fold cross-validated Pearson's r between metabolomic age models and CA ranged between 0.47 and 0.65 in the training cohort set (mean absolute error: 8-9 years). Metabolomic age models, adjusted for CA, were associated with C-reactive protein, and inversely associated with glomerular filtration rate. Positively associated risk factors included obesity, diabetes, smoking, and physical inactivity. In UK Biobank, correlations of metabolomic age with CA were modest (r = 0.29-0.33), yet all metabolomic model scores predicted mortality (hazard ratios of 1.01 to 1.06/metabolomic age year) and CVD, after adjustment for CA. While metabolomic age models were only moderately associated with CA in an independent population, they provided additional prediction of morbidity and mortality over CA itself, suggesting their wider applicability
Metabolic profiles of socioeconomic position: a multi-cohort analysis
Background Low socioeconomic position (SEP) is a risk factor for multiple health outcomes, but its molecular imprints in the body remain unclear. Methods We examined SEP as a determinant of serum nuclear magnetic resonance metabolic profiles, in approximately 30,000 adults and 4,000 children across ten UK and Finnish cohort studies. Results In risk factor-adjusted analysis of 233 metabolic measures, low educational attainment was associated with 37 measures including higher levels of triglycerides in small high-density lipoproteins (HDL) and lower levels of docosahexaenoic acid (DHA), omega-3 fatty acids, apolipoprotein A1, large and very large HDL particles (including levels of their respective lipid constituents), and cholesterol measures across different density lipoproteins. Among adults whose father worked in manual occupations, associations with apolipoprotein A1, large and very large HDL particles and HDL-2 cholesterol remained after adjustment for SEP in later life. Among manual workers, levels of glutamine were higher compared to non-manual workers. All three indicators of low SEP were associated with lower DHA, omega-3 fatty acids and HDL diameter. At all ages, children of manual workers had lower levels of DHA as a proportion of total fatty acids. Conclusions Our work indicates that social and economic factors have a measurable impact on human physiology. Lower SEP was independently associated with a generally unfavorable metabolic profile, consistent across ages and cohorts. The metabolites we found associated with SEP, including DHA, are known to predict cardiovascular disease and cognitive decline in later life and may contribute to health inequalities
Metabolic profiles of socio-economic position: a multi-cohort analysis
Background: Low socio-economic position (SEP) is a risk factor for multiple health outcomes, but its molecular imprints in the body remain unclear.
Methods: We examined SEP as a determinant of serum nuclear magnetic resonance metabolic profiles in 30 000 adults and 4000 children across 10 UK and Finnish cohort studies.
Results: In risk-factor-adjusted analysis of 233 metabolic measures, low educational attainment was associated with 37 measures including higher levels of triglycerides in
small high-density lipoproteins (HDL) and lower levels of docosahexaenoic acid (DHA),
omega-3 fatty acids, apolipoprotein A1, large and very large HDL particles (including
levels of their respective lipid constituents) and cholesterol measures across different
density lipoproteins. Among adults whose father worked in manual occupations, associations with apolipoprotein A1, large and very large HDL particles and HDL-2 cholesterol
remained after adjustment for SEP in later life. Among manual workers, levels of glutamine were higher compared with non-manual workers. All three indicators of low SEP
were associated with lower DHA, omega-3 fatty acids and HDL diameter. At all ages, children of manual workers had lower levels of DHA as a proportion of total fatty acids.
Conclusions: Our work indicates that social and economic factors have a measurable impact on human physiology. Lower SEP was independently associated with a generally
unfavourable metabolic profile, consistent across ages and cohorts. The metabolites we
found to be associated with SEP, including DHA, are known to predict cardiovascular disease and cognitive decline in later life and may contribute to health inequalities
Two new sponge species (Demospongiae: Chalinidae and Suberitidae) isolated from hyperarid mangroves of Qatar with notes on their potential antibacterial bioactivity.
This study presents the taxonomic description of two new sponge species that are intimately associated with the hyperarid mangrove ecosystem of Qatar. The study includes a preliminary evaluation of the sponges' potential bioactivity against pathogens. Chalinula qatari sp. nov. is a fragile thinly encrusting sponge with a vivid maroon colour in life, often with oscular chimneys and commonly recorded on pneumatophores in the intertidal and shallow subtidal zone. Suberites luna sp. nov. is a massive globular-lobate sponge with a greenish-black colour externally and a yellowish orange colour internally, recorded on pneumatophores in the shallow subtidal zone, with large specimens near the seagrass ecosystem that surrounds the mangrove. For both species, a drug extraction protocol and an antibacterial experiment was performed. The extract of Suberites luna sp. nov. was found to be bioactive against recognized pathogens such as Staphylococcus epidermidis, Staphylococcus aureus and Enterococcus faecalis, but no bioactive activity was recorded for Chalinula qatari sp. nov. This study highlights the importance of increasing bioprospecting effort in hyperarid conditions and the importance of combining bioprospecting with taxonomic studies for the identification of novel marine drugs.QNRF/URE
An alternative strategy for perinatal verbal autopsy coding: single versus multiple coders: Perinatal verbal autopsy
To determine the comparability between cause of death by a single physician coder and a two-physician panel, using verbal autopsy
Causes of community stillbirths and early neonatal deaths in low-income countries using verbal autopsy: an International, Multicenter Study
Six million stillbirths (SB) and early neonatal deaths (END) occur annually worldwide, mostly in rural settings distant from health facilities. We used verbal autopsy (VA), to understand causes of non-hospital, community-based SB and END from four low-income countries
Validation of lipid-related therapeutic targets for coronary heart disease prevention using human genetics
Copyright © 2021 The Author(s). Drug target Mendelian randomization (MR) studies use DNA sequence variants in or near a gene encoding a drug target, that alter the target’s expression or function, as a tool to anticipate the effect of drug action on the same target. Here we apply MR to prioritize drug targets for their causal relevance for coronary heart disease (CHD). The targets are further prioritized using independent replication, co-localization, protein expression profiles and data from the British National Formulary and clinicaltrials.gov. Out of the 341 drug targets identified through their association with blood lipids (HDL-C, LDL-C and triglycerides), we robustly prioritize 30 targets that might elicit beneficial effects in the prevention or treatment of CHD, including NPC1L1 and PCSK9, the targets of drugs used in CHD prevention. We discuss how this approach can be generalized to other targets, disease biomarkers and endpoints to help prioritize and validate targets during the drug development process.The authors are grateful to the studies and consortia that provided summary association results and to the participants of the biobanks and research cohorts. This research has been conducted using the UK Biobank Resource under Application Number 12113. UK Biobank was established by the Wellcome Trust medical charity, Medical Research Council, Department of Health, Scottish Government, and the Northwest Regional Development Agency. It has also had funding from the Welsh Assembly Government and the British Heart Foundation. M.G.M. is supported by a BHF Fellowship FS/17/70/33482. A.F.S. is supported by BHF grant PG/18/5033837 and the UCL BHF Research Accelerator AA/18/6/34223. C.F. and A.F.S. received additional support from the National Institute for Health Research University College London Hospitals Biomedical Research Centre. A.D.H. is an NIHR Senior Investigator. We further acknowledge support from the Rosetrees Trust. The UCLEB Consortium is supported by a British Heart Foundation Program Grant (RG/10/12/28456). M.K. was supported by grants from the Wellcome Trust, UK (221854/Z/20/Z), the UK Medical Research Council (R024227 and S011676), the National Institute on Aging, NIH (R01AG056477 and RF1AG062553), and the Academy of Finland (311492). AH receives support from the British Heart Foundation, the Economic and Social Research Council (ESRC), the Horizon 2020 Framework Program of the European Union, the National Institute on Aging, the National Institute for Health Research University College London Hospitals Biomedical Research Centre, the UK Medical Research Council and works in a unit that receives support from the UK Medical Research Council. A.G. is funded by the Member States of EMBL. P.C. is supported by the Thailand Research Fund (MRG6280088). D.A.L. is supported by a British Heart Foundation Chair (CH/F/20/90003) and British Heart Foundation grant (AA/18/7/34219), is a National Institute of Health Research Senior Investigator (NF-0616-10102) and works in a Unit that receives support from the University of Bristol and UK Medical Research Council (MC_UU_00011/6). This work was funded in part by the UKRI and NIHR through the Multimorbidity Mechanism and Therapeutics Research Collaborative (MR/V033867/1)
Time-aging time-stress superposition in soft glass under tensile deformation field
We have studied the tensile deformation behaviour of thin films of aging
aqueous suspension of Laponite, a model soft glassy material, when subjected to
a creep flow field generated by a constant engineering normal stress. Aqueous
suspension of Laponite demonstrates aging behaviour wherein it undergoes time
dependent enhancement of its elastic modulus as well as its characteristic
relaxation time. However, under application of the normal stress, the rate of
aging decreases and in the limit of high stress, the aging stops with the
suspension now undergoing a plastic deformation. Overall, it is observed that
the aging that occurs over short creep times at small normal stresses is same
as the aging that occurs over long creep times at large normal stresses. This
observation allows us to suggest an aging time - process time - normal stress
superposition principle, which can predict rheological behaviour at longer
times by carrying out short time tests.Comment: 26 pages, 7 figures, To appear in Rheologica Act
- …