9 research outputs found

    Ecological and social strategies for managing fisheries using the Resist-Accept- Direct (RAD) framework

    Get PDF
    Fisheries management is a complex task made even more challenging by rapid and unprecedented socioecological transformations associated with climate change. The Resist-Accept- Direct (RAD) framework can be a useful tool to support fisheries management in facing the high uncertainty and variability associated with aquatic ecosystem transformations. Here, RAD strategies are presented to address ecological goals for aquatic ecosystems and social goals for fisheries. These strategies are mapped on a controllability matrix which explores the ability to guide a system\u27s behaviour towards a desired state based on ecological responsiveness and societal receptivity to change. Understanding and improving the controllability of aquatic systems and fisheries can help managers to maintain the broadest suite of available RAD management strategies

    Managing for RADical ecosystem change: applying the Resist-Accept- Direct (RAD) framework

    Get PDF
    Ecosystem transformation involves the emergence of persistent ecological or social–ecological systems that diverge, dramatically and irreversibly, from prior ecosystem structure and function. Such transformations are occurring at increasing rates across the planet in response to changes in climate, land use, and other factors. Consequently, a dynamic view of ecosystem processes that accommodates rapid, irreversible change will be critical for effectively conserving fish, wildlife, and other natural resources, and maintaining ecosystem services. However, managing ecosystems toward states with novel structure and function is an inherently unpredictable and difficult task. Managers navigating ecosystem transformation can benefit from considering broader objectives, beyond a traditional focus on resisting ecosystem change, by also considering whether accepting inevitable change or directing it along some desirable pathway is more feasible (that is, practical and appropriate) under some circumstances (the RAD framework). By explicitly acknowledging transformation and implementing an iterative RAD approach, natural resource managers can be deliberate and strategic in addressing profound ecosystem change

    Big runs of little fish: First estimates of run size and exploitation in an amphidromous postlarvae fishery

    No full text
    Amphidromous Postlarvae Fisheries (APFs) constitute a globally-widespread and distinctive class of fishery that is largely unknown to fisheries science. APFs harvest ocean-to-river migrating fishes at smaller sizes and younger ages than any other class of fishery. No quantitative estimates of run size and exploitation exist, which are needed to evaluate APF sustainability. Migrating amphidromous fishes are vectors of marine nutrients to estuaries and rivers, and run size quantification is needed to reveal the magnitude of this ecosystem function. We present a novel adaptation of trapezoidal area under the curve (TAUC) methods, which we apply in a Caribbean case study to yield the first simultaneous estimates of an APF run size and harvest. Run size estimates ranged 7.3–9.4 million postlarvae (926–1,184 kg), and exploitation estimates (5.8–7.0%) indicated low harvest in the Ro Grande de Arecibo, Puerto Rico. Our representative run size estimates reveal that amphidromous postlarvae transport hundreds of kilograms of biomass per month to an estuary and river, the first empirical evidence that amphidromous migrations are large-magnitude material subsidies of lotic ecosystems.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Managing for RADical ecosystem change: applying the Resist‐Accept‐Direct (RAD) framework

    Get PDF
    Ecosystem transformation involves the emergence of persistent ecological or social–ecological systems that diverge, dramatically and irreversibly, from prior ecosystem structure and function. Such transformations are occurring at increasing rates across the planet in response to changes in climate, land use, and other factors. Consequently, a dynamic view of ecosystem processes that accommodates rapid, irreversible change will be critical for effectively conserving fish, wildlife, and other natural resources, and maintaining ecosystem services. However, managing ecosystems toward states with novel structure and function is an inherently unpredictable and difficult task. Managers navigating ecosystem transformation can benefit from considering broader objectives, beyond a traditional focus on resisting ecosystem change, by also considering whether accepting inevitable change or directing it along some desirable pathway is more feasible (that is, practical and appropriate) under some circumstances (the RAD framework). By explicitly acknowledging transformation and implementing an iterative RAD approach, natural resource managers can be deliberate and strategic in addressing profound ecosystem change.The Wildlife SocietyOpen access articleThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    FreshLanDiv: A Global Database of Freshwater Biodiversity Across Different Land Uses

    No full text
    International audienceMotivation Freshwater ecosystems have been heavily impacted by land‐use changes, but data syntheses on these impacts are still limited. Here, we compiled a global database encompassing 241 studies with species abundance data (from multiple biological groups and geographic locations) across sites with different land‐use categories. This compilation will be useful for addressing questions regarding land‐use change and its impact on freshwater biodiversity. Main Types of Variables Contained The database includes metadata of each study, sites location, sample methods, sample time, land‐use category and abundance of each taxon. Spatial Location and Grain The database contains data from across the globe, with 85% of the sites having well‐defined geographical coordinates. Major Taxa and Level of Measurement The database covers all major freshwater biological groups including algae, macrophytes, zooplankton, macroinvertebrates, fish and amphibians
    corecore