2,089 research outputs found
Depth and size effects on cosmogenic nuclide production in meteorites
The galactic cosmic particle radiation (GCR) can cause changes in condensed extraterrestrial matter in different ways. It can lose energy via ionization processes of induced nuclear reactions which lead to a wide variety of stable and radioactive cosmogenic nuclides. Heavy particles incur radiation damage in minerals such as olivine and pyroxene. Light particles predominantly tend to induce nuclear reactions, causing the development of a secondary particle cascade of neutrons, protons, pions and gamma-rays and the production of cosmogenic nuclides. Such processes are described by various models, which predict the depth and size dependent production of cosmogenic nuclides
Accelerator experiments on the contribution of secondary particles to the production of cosmogenic nuclides in meteorites
Through the interaction of galactic cosmic particle radiation (GCR) a wide variety of cosmogenic nuclides is produced in meteorites. They provide historical information about the cosmic radiation and the bombarded meteorites. An important way to understand the production mechanisms of cosmogenic nuclides in meteorites is to gather information about the depth and size dependence of the build-up of Galactic Rays Cosmic-secondary particles within meteorites of different sizes and chemical compositions. Simulation experiments with meteorite models offer an alternative to direct observation providing a data basis to describe the development and action of the secondary cascade induced by the GCR in meteorites
Workshop on Cosmogenic Nuclides
Abstracts of papers presented at the Workshop on Cosmogenic Nuclides are compiled. The major topic areas covered include: new techniques for measuring nuclides such as tandem accelerator and resonance mass spectrometry; solar modulation of cosmic rays; pre-irradiation histories of extraterrestrial materials; terrestrial studies; simulations and cross sections; nuclide production rate calculations; and meteoritic nuclides
Representations of G+++ and the role of space-time
We consider the decomposition of the adjoint and fundamental representations
of very extended Kac-Moody algebras G+++ with respect to their regular A type
subalgebra which, in the corresponding non-linear realisation, is associated
with gravity. We find that for many very extended algebras almost all the A
type representations that occur in the decomposition of the fundamental
representations also occur in the adjoint representation of G+++. In
particular, for E8+++, this applies to all its fundamental representations.
However, there are some important examples, such as An+++, where this is not
true and indeed the adjoint representation contains no generator that can be
identified with a space-time translation. We comment on the significance of
these results for how space-time can occur in the non-linear realisation based
on G+++. Finally we show that there is a correspondence between the A
representations that occur in the fundamental representation associated with
the very extended node and the adjoint representation of G+++ which is
consistent with the interpretation of the former as charges associated with
brane solutions.Comment: 45 pages, 9 figures, 9 tables, te
On the Opening of Branes
We relate, in 10 and 11 dimensional supergravities, configurations of
intersecting closed branes with vanishing binding energy to configurations
where one of the branes opens and has its boundaries attached to the other.
These boundaries are charged with respect to fields living on the closed brane.
The latter hosts electric and magnetic charges stemming from dual pairs of open
branes terminating on it. We show that charge conservation, gauge invariance
and supersymmetry entirely determine these charges and these fields, which can
be seen as Goldstone fields of broken supersymmetry. Open brane boundary
charges can annihilate, restoring the zero binding energy configuration. This
suggests emission of closed branes by branes, a generalization of closed string
emission by D-branes. We comment on the relation of the Goldstone fields to
matrix models approaches to M-theory.Comment: 13 pages, LaTeX, no figure
E11 and Spheric Vacuum Solutions of Eleven- and Ten dimensional Supergravity Theories
In view of the newly conjectured Kac-Moody symmetries of supergravity
theories placed in eleven and ten dimensions, the relation between these
symmetry groups and possible compactifications are examined. In particular, we
identify the relevant group cosets that parametrise the vacuum solutions of AdS
x S type.Comment: discussion improve
Multi-Task Policy Search for Robotics
© 2014 IEEE.Learning policies that generalize across multiple tasks is an important and challenging research topic in reinforcement learning and robotics. Training individual policies for every single potential task is often impractical, especially for continuous task variations, requiring more principled approaches to share and transfer knowledge among similar tasks. We present a novel approach for learning a nonlinear feedback policy that generalizes across multiple tasks. The key idea is to define a parametrized policy as a function of both the state and the task, which allows learning a single policy that generalizes across multiple known and unknown tasks. Applications of our novel approach to reinforcement and imitation learning in realrobot experiments are shown
Quality of a Which-Way Detector
We introduce a measure Q of the "quality" of a quantum which-way detector,
which characterizes its intrinsic ability to extract which-way information in
an asymmetric two-way interferometer. The "quality" Q allows one to separate
the contribution to the distinguishability of the ways arising from the quantum
properties of the detector from the contribution stemming from a-priori
which-way knowledge available to the experimenter, which can be quantified by a
predictability parameter P. We provide an inequality relating these two sources
of which-way information to the value of the fringe visibility displayed by the
interferometer. We show that this inequality is an expression of duality,
allowing one to trace the loss of coherence to the two reservoirs of which-way
information represented by Q and P. Finally, we illustrate the formalism with
the use of a quantum logic gate: the Symmetric Quanton-Detecton System (SQDS).
The SQDS can be regarded as two qubits trying to acquire which way information
about each other. The SQDS will provide an illustrating example of the
reciprocal effects induced by duality between system and which-way detector.Comment: 10 pages, 5 figure
G+++ Invariant Formulation of Gravity and M-Theories: Exact BPS Solutions
We present a tentative formulation of theories of gravity with suitable
matter content, including in particular pure gravity in D dimensions, the
bosonic effective actions of M-theory and of the bosonic string, in terms of
actions invariant under very-extended Kac-Moody algebras G+++. We conjecture
that they host additional degrees of freedom not contained in the conventional
theories. The actions are constructed in a recursive way from a level expansion
for all very-extended algebras G+++. They constitute non-linear realisations on
cosets, a priori unrelated to space-time, obtained from a modified Chevalley
involution. Exact solutions are found for all G+++. They describe the algebraic
properties of BPS extremal branes, Kaluza-Klein waves and Kaluza-Klein
monopoles. They illustrate the generalisation to all G+++ invariant theories of
the well-known duality properties of string theories by expressing duality as
Weyl invariance in G+++. Space-time is expected to be generated dynamically. In
the level decomposition of E8+++ = E11, one may indeed select an A10
representation of generators Pa which appears to engender space-time
translations by inducing infinite towers of fields interpretable as field
derivatives in space and time.Comment: Latex 45 pages, 1 figure. Discussion on pages 19 and 20 altered.
Appendix B amplified. 4 footnotes added. 2 references added. Acknowledgments
updated. Additional minor correction
E10 and SO(9,9) invariant supergravity
We show that (massive) D=10 type IIA supergravity possesses a hidden rigid
SO(9,9) symmetry and a hidden local SO(9) x SO(9) symmetry upon dimensional
reduction to one (time-like) dimension. We explicitly construct the associated
locally supersymmetric Lagrangian in one dimension, and show that its bosonic
sector, including the mass term, can be equivalently described by a truncation
of an E10/K(E10) non-linear sigma-model to the level \ell<=2 sector in a
decomposition of E10 under its so(9,9) subalgebra. This decomposition is
presented up to level 10, and the even and odd level sectors are identified
tentatively with the Neveu--Schwarz and Ramond sectors, respectively. Further
truncation to the level \ell=0 sector yields a model related to the reduction
of D=10 type I supergravity. The hyperbolic Kac--Moody algebra DE10, associated
to the latter, is shown to be a proper subalgebra of E10, in accord with the
embedding of type I into type IIA supergravity. The corresponding decomposition
of DE10 under so(9,9) is presented up to level 5.Comment: 1+39 pages LaTeX2e, 2 figures, 2 tables, extended tables obtainable
by downloading sourc
- âŠ