6 research outputs found
Entropy in the Classical and Quantum Polymer Black Hole Models
We investigate the entropy counting for black hole horizons in loop quantum
gravity (LQG). We argue that the space of 3d closed polyhedra is the classical
counterpart of the space of SU(2) intertwiners at the quantum level. Then
computing the entropy for the boundary horizon amounts to calculating the
density of polyhedra or the number of intertwiners at fixed total area.
Following the previous work arXiv:1011.5628, we dub these the classical and
quantum polymer models for isolated horizons in LQG. We provide exact
micro-canonical calculations for both models and we show that the classical
counting of polyhedra accounts for most of the features of the intertwiner
counting (leading order entropy and log-correction), thus providing us with a
simpler model to further investigate correlations and dynamics. To illustrate
this, we also produce an exact formula for the dimension of the intertwiner
space as a density of "almost-closed polyhedra".Comment: 24 page
A Note on the Symmetry Reduction of SU(2) on Horizons of Various Topologies
It is known that the SU(2) degrees of freedom manifest in the description of
the gravitational field in loop quantum gravity are generally reduced to U(1)
degrees of freedom on an isolated horizon. General relativity also allows
black holes with planar, toroidal, or higher genus topology for their horizons.
These solutions also meet the criteria for an isolated horizon, save for the
topological criterion, which is not crucial. We discuss the relevant
corresponding symmetry reduction for black holes of various topologies (genus 0
and ) here and discuss its ramifications to black hole entropy within
the loop quantum gravity paradigm. Quantities relevant to the horizon theory
are calculated explicitly using a generalized ansatz for the connection and
densitized triad, as well as utilizing a general metric admitting hyperbolic
sub-spaces. In all scenarios, the internal symmetry may be reduced to
combinations of U(1).Comment: 13 pages, two figures. Version 2 has several references updated and
added, as well as some minor changes to the text. Accepted for publication in
Class. Quant. Gra
Quantum simplicial geometry in the group field theory formalism: reconsidering the Barrett-Crane model
A dual formulation of group field theories, obtained by a Fourier transform
mapping functions on a group to functions on its Lie algebra, has been proposed
recently. In the case of the Ooguri model for SO(4) BF theory, the variables of
the dual field variables are thus so(4) bivectors, which have a direct
interpretation as the discrete B variables. Here we study a modification of the
model by means of a constraint operator implementing the simplicity of the
bivectors, in such a way that projected fields describe metric tetrahedra. This
involves a extension of the usual GFT framework, where boundary operators are
labelled by projected spin network states. By construction, the Feynman
amplitudes are simplicial path integrals for constrained BF theory. We show
that the spin foam formulation of these amplitudes corresponds to a variant of
the Barrett-Crane model for quantum gravity. We then re-examin the arguments
against the Barrett-Crane model(s), in light of our construction.Comment: revtex, 24 page
The SU(2) black hole entropy revisited
We study the state-counting problem that arises in the SU(2) black hole entropy calculation in loop quantum gravity. More precisely, we compute the leading term and the logarithmic correction of both the spherically symmetric and the distorted SU( 2) black holes. Contrary to what has been done in previous works, we have to take into account "quantum corrections" in our framework in the sense that the level k of the Chern-Simons theory which describes the black hole is finite and not sent to infinity. Therefore, the new results presented here allow for the computation of the entropy in models where the quantum group corrections are important
Dynamical evaporation of quantum horizons
We describe the black hole evaporation process driven by the dynamical evolution of the quantum gravitational degrees of freedom resident at the horizon, as identified by the loop quantum gravity kinematics. Using a parallel with the Brownian motion, we interpret the first law of quantum dynamical horizon in terms of a fluctuation-dissipation relation. In this way, the horizon evolution is described in terms of relaxation to an equilibrium state balanced by the excitation of Planck scale constituents of the horizon. This discrete quantum hair structure associated to the horizon geometry produces a deviation from thermality in the radiation spectrum. We investigate the final stage of the evaporation process and show how the dynamics leads to the formation of a massive remnant, which can eventually decay. Implications for the information paradox are discussed