51 research outputs found

    The Impact of Aging on Brain Pituitary Adenylate Cyclase Activating Polypeptide Pathology and Cognition in Mice and Rhesus Macaques

    Get PDF
    Pituitary adenylate cyclase activating polypeptide (PACAP) is associated with Alzheimer\u27s disease (AD), but its age-related effects are unknown. We chose the rhesus macaque due to its closeness to human anatomy and physiology. We examined four variables: aging, cognitive performance, amyloid plaques and PACAP. Delayed nonmatching-to-sample recognition memory scores declined with age and correlated with PACAP levels in the striatum, parietal and temporal lobes. Because amyloid plaques were the only AD pathology in the old rhesus macaque, we further studied human amyloid precursor protein (hAPP) transgenic mice. Aging was associated with decreased performance in the Morris Water Maze (MWM). In wild type (WT) C57BL/6 mice, the performance was decreased at age 24-26 month whereas in hAPP transgenic mice, it was decreased as early as 9-12 month. Neuritic plaques in adult hAPP mice clustered in hippocampus and adjacent cortical regions, but did not propagate further into the frontal cortex. Cerebral PACAP protein levels were reduced in hAPP mice compared to age-matched WT mice, but the genetic predisposition dominated cognitive decline. Taken together, these data suggest an association among PACAP levels, aging, cognitive function and amyloid load in nonhuman primates, with both similarities and differences from human AD brains. Our results suggest caution in choosing animal models and in extrapolating data to human AD studies

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Characterizing cognitive aging of associative memory in animal models

    No full text
    An overview is provided of the simple single-cue delay and trace eyeblink conditioning paradigms as techniques to assess associative learning and memory in the aged. We highlight and focus this review on the optimization of the parameter space of eyeblink conditioning designs in the aged to avoid and control for potential confounds that may arise when studying aged mammals. The need to examine the contribution of non-associative factors that can contribute to performance outcomes is emphasized, and how age-related changes in the central nervous system as well as peripheral sensory factors can potentially bias the interpretation of the data in the aged is discussed. The way in which slight alterations of the parameter space in the delay and trace eyeblink conditioning paradigms can lead to delayed but intact conditioning, rather than impaired performance in aged animals is also discussed. Overall, the eyeblink conditioning paradigm, when optimized for the age of the animal in the study, is an elegantly simple technique for assessment of associative learning and memory. When design caveats described above are taken into account, this important type of memory, with its well-defined neural substrates, should definitely be included in cognitive assessment batteries for the aged

    The Impact of Aging on Brain Pituitary Adenylate Cyclase Activating Polypeptide, Pathology and Cognition in Mice and Rhesus Macaques

    No full text
    Pituitary adenylate cyclase activating polypeptide (PACAP) is associated with Alzheimer’s disease (AD), but its age-related effects are unknown. We chose the rhesus macaque due to its closeness to human anatomy and physiology. We examined four variables: aging, cognitive performance, amyloid plaques and PACAP. Delayed nonmatching-to-sample recognition memory scores declined with age and correlated with PACAP levels in the striatum, parietal and temporal lobes. Because amyloid plaques were the only AD pathology in the old rhesus macaque, we further studied human amyloid precursor protein (hAPP) transgenic mice. Aging was associated with decreased performance in the Morris Water Maze (MWM). In wild type (WT) C57BL/6 mice, the performance was decreased at age 24–26 month whereas in hAPP transgenic mice, it was decreased as early as 9–12 month. Neuritic plaques in adult hAPP mice clustered in hippocampus and adjacent cortical regions, but did not propagate further into the frontal cortex. Cerebral PACAP protein levels were reduced in hAPP mice compared to age-matched WT mice, but the genetic predisposition dominated cognitive decline. Taken together, these data suggest an association among PACAP levels, aging, cognitive function and amyloid load in nonhuman primates, with both similarities and differences from human AD brains. Our results suggest caution in choosing animal models and in extrapolating data to human AD studies

    The Impact of Aging on Brain Pituitary Adenylate Cyclase Activating Polypeptide, Pathology and Cognition in Mice and Rhesus Macaques

    Get PDF
    Pituitary adenylate cyclase activating polypeptide (PACAP) is associated with Alzheimer's disease (AD), but its age-related effects are unknown. We chose the rhesus macaque due to its closeness to human anatomy and physiology. We examined four variables: aging, cognitive performance, amyloid plaques and PACAP. Delayed nonmatching-to-sample recognition memory scores declined with age and correlated with PACAP levels in the striatum, parietal and temporal lobes. Because amyloid plaques were the only AD pathology in the old rhesus macaque, we further studied human amyloid precursor protein (hAPP) transgenic mice. Aging was associated with decreased performance in the Morris Water Maze (MWM). In wild type (WT) C57BL/ 6 mice, the performance was decreased at age 24-26 month whereas in hAPP transgenic mice, it was decreased as early as 9-12 month. Neuritic plaques in adult hAPP mice clustered in hippocampus and adjacent cortical regions, but did not propagate further into the frontal cortex. Cerebral PACAP protein levels were reduced in hAPP mice compared to age-matched WT mice, but the genetic predisposition dominated cognitive decline. Taken together, these data suggest an association among PACAP levels, aging, cognitive function and amyloid load in nonhuman primates, with both similarities and differences from human AD brains. Our results suggest caution in choosing animal models and in extrapolating data to human AD studies.Alzheimer Association New Investigator Research Grant [AA-NIRG-14-322078]; Arizona Alzheimer Disease Consortium Pilot Grant [NIH/NIA-P30 AG19610]; Arizona Alzheimer Disease Consortium Pilot Grant (State of Arizona/Arizona Department of Health Services (ADHS)); McKnight Brain Research Foundation; Barrow Neurological Foundation Project; National Science Foundation of China [81671050]; NIH [R01 AG003376, P51 RR000169]Open Access JournalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
    • …
    corecore