5 research outputs found

    Optimization and performance study of a proton CT system for pre-clinical small animal imaging

    Get PDF
    Proton computed tomography (pCT) promises to reduce or even eliminate range uncertainties inherent in the conversion of Hounsfield units into relative stopping power (RSP) for proton therapy treatment planning. This is of particular interest for proton irradiation studies in animal models due to the high precision required and uncertainties in tissue properties. We propose a dedicated single-particle tracking pCT system consisting of low material budget floating strips Micromegas detectors for tracking and a segmented time-projection-chamber with vertical Mylar absorbers, functioning as a range telescope. Based on Monte Carlo simulations of a realistic in silico beam and detector implementation, a geometrical optimization of the system components was conducted to safeguard an ideal operation close to intrinsic performance limits at 75 MeV. Moreover, the overall imaging capabilities relevant for pre-clinical proton therapy treatment planning were evaluated for a mouse model. In order to minimize extrinsic uncertainties in the estimated proton trajectories, a spacing of the two tracking planes of at least 7 cm is required in both tracking detectors. Additionally, novel in-house developed and produced aluminum-based readout electrodes promise superior performance with around 3mm-1 spatial resolution due to the reduced material budget. Concerning the range telescope, an absorber thickness within 500 µm to 750 µm was found to yield the best compromise between water-equivalent path length resolution and complexity of the detector instrumentation, still providing sub-0.5% RSP accuracy. The optimized detector configuration enables better than 2% range accuracy for proton therapy treatment planning in pre-clinical data sets. This work outlines the potential of pCT for small animal imaging. The performance of the proposed and optimized system provides superior treatment planning accuracy compared to conventional X-ray CT. Thus, pCT can play an important role in translational and pre-clinical cancer research

    I-BEAT: Ultrasonic method for online measurement of the energy distribution of a single ion bunch

    Get PDF
    The shape of a wave carries all information about the spatial and temporal structure of its source, given that the medium and its properties are known. Most modern imaging methods seek to utilize this nature of waves originating from Huygens' principle. We discuss the retrieval of the complete kinetic energy distribution from the acoustic trace that is recorded when a short ion bunch deposits its energy in water. This novel method, which we refer to as Ion-Bunch Energy Acoustic Tracing (I-BEAT), is a refinement of the ionoacoustic approach. With its capability of completely monitoring a single, focused proton bunch with prompt readout and high repetition rate, I-BEAT is a promising approach to meet future requirements of experiments and applications in the field of laser-based ion acceleration. We demonstrate its functionality at two laser-driven ion sources for quantitative online determination of the kinetic energy distribution in the focus of single proton bunches
    corecore