84 research outputs found

    Tank 241-AY-102 Leak Assessment Supporting Documentation: Miscellaneous Reports, Letters, Memoranda, And Data

    Get PDF
    This report contains reference materials cited in RPP-ASMT -53793, Tank 241-AY-102 Leak Assessment Report, that were obtained from the National Archives Federal Records Repository in Seattle, Washington, or from other sources including the Hanford Site's Integrated Data Management System database (IDMS)

    Longevity of Rodenticide Bait Pellets in a Tropical Environment Following a Rat Eradication Program

    Get PDF
    Invasive rodents (primarily Rattus spp.) are responsible for loss of biodiversity in island ecosystems worldwide. Large-scale rodenticide applications are typically used to eradicate rats and restore ecological communities. In tropical ecosystems, environmental conditions rapidly degrade baits and competition for baits by non-target animals can result in eradication failure. Our objective was to evaluate persistence of rodenticide baits during a rat eradication program on Palmyra Atoll; a remote tropical atoll with intense competition for resources by land crabs. Following aerial application, bait condition was monitored in four terrestrial environments and in the canopy foliage of coconut palms. Ten circular PVC hoops were fixed in place in each of Palmyra\u27s four primary terrestrial habitats and five rodenticide pellets were placed in each hoop. Five coconut palms were selected in three distinct regions of the atoll. One rodenticide pellet was placed on each of five palm fronds in each coconut palm. Fresh baits were placed in all monitoring locations after each broadcast bait application. Bait condition and survival was monitored for 7 days after the first bait application and 6 days after second application. Bait survival curves differed between applications at most monitoring sites, suggesting a decrease in overall rat activity as a result of rodenticide treatment. One terrestrial site showed near 100%bait survival after both applications, likely due to low localized rat and crab densities. Median days to pellet disappearance were one and two days for the first and second application, respectively. Differences in survival curves were not detected in canopy sites between bait applications. Median days to pellet disappearance in canopy sites were 2 and 4 days for the first and second application, respectively. Frequent rainfall likely contributed to rapid degradation of bait pellets in coconut palm fronds

    Assessing spatial variation and overall density of aerially broadcast toxic bait during a rat eradication on Palmyra Atoll

    Get PDF
    Baits containing brodifacoum rodenticide were aerially applied to eradicate invasive black rats from Palmyra Atoll, an important biodiversity center. Bait application must be sufficient to be effective, while minimizing environmental hazards by not exceeding designated label rates, prompting our bait density assessments for two aerial drops. With few physical or human resources on this remote, uninhabited atoll, assessments were particularly challenging, requiring observations within 30 min of aerial application to avoid bait loss to rats, crabs, or elements. We estimated bait density using quadrat sampling within 13 terrestrial sampling areas. We also sampled 10 tidal flat areas to assess inadvertent bait scatter into marine aquatic environments. Of particular value for challenging sampling circumstances, our quadrats had to be lightweight and durable, which we addressed by using widely available PVC hoops (“Hula Hoops”), the size of which was ideal for sampling purposes. At 77.5 and 78.7 kg/ha, overall bait densities were very near to the target densities of 80 and 75 kg/ha, respectively. However, considerable variability in bait densities existed among sampled areas, 8.6–178.2 and 31.4–129.5 kg/ha for the respective drops. Environmental, human, and equipment factors likely accounted for this variability. Tidal flat sampling revealed variable bait scatter into aquatic environments, from 0–46.3 kg/ha across the two drops. No differences were found in average bait densities among 1-, 4-, and 7-m distances from high tide lines. Our methods might broadly assist bait density (and other) surveys under challenging circumstances

    Assessing spatial variation and overall density of aerially broadcast toxic bait during a rat eradication on Palmyra Atoll

    Get PDF
    Baits containing brodifacoum rodenticide were aerially applied to eradicate invasive black rats from Palmyra Atoll, an important biodiversity center. Bait application must be sufficient to be effective, while minimizing environmental hazards by not exceeding designated label rates, prompting our bait density assessments for two aerial drops. With few physical or human resources on this remote, uninhabited atoll, assessments were particularly challenging, requiring observations within 30 min of aerial application to avoid bait loss to rats, crabs, or elements. We estimated bait density using quadrat sampling within 13 terrestrial sampling areas. We also sampled 10 tidal flat areas to assess inadvertent bait scatter into marine aquatic environments. Of particular value for challenging sampling circumstances, our quadrats had to be lightweight and durable, which we addressed by using widely available PVC hoops (“Hula Hoops”), the size of which was ideal for sampling purposes. At 77.5 and 78.7 kg/ha, overall bait densities were very near to the target densities of 80 and 75 kg/ha, respectively. However, considerable variability in bait densities existed among sampled areas, 8.6–178.2 and 31.4–129.5 kg/ha for the respective drops. Environmental, human, and equipment factors likely accounted for this variability. Tidal flat sampling revealed variable bait scatter into aquatic environments, from 0–46.3 kg/ha across the two drops. No differences were found in average bait densities among 1-, 4-, and 7-m distances from high tide lines. Our methods might broadly assist bait density (and other) surveys under challenging circumstances

    Assessing spatial variation and overall density of aerially broadcast toxic bait during a rat eradication on Palmyra

    Get PDF
    Abstract Baits containing brodifacoum rodenticide were aerially applied to eradicate invasive black rats from Palmyra Atoll, an important biodiversity center. Bait application must be sufficient to be effective, while minimizing environmental hazards by not exceeding designated label rates, prompting our bait density assessments for two aerial drops. With few physical or human resources on this remote, uninhabited atoll, assessments were particularly challenging, requiring observations within 30 min of aerial application to avoid bait loss to rats, crabs, or elements. We estimated bait density using quadrat sampling within 13 terrestrial sampling areas. We also sampled 10 tidal flat areas to assess inadvertent bait scatter into marine aquatic environments. Of particular value for challenging sampling circumstances, our quadrats had to be lightweight and durable, which we addressed by using widely available PVC hoops ("Hula Hoops"), the size of which was ideal for sampling purposes. At 77.5 and 78.7 kg/ha, overall bait densities were very near to the target densities of 80 and 75 kg/ha, respectively. However, considerable variability in bait densities existed among sampled areas, 8.6-178.2 and 31.4-129.5 kg/ha for the respective drops. Environmental, human, and equipment factors likely accounted for this variability. Tidal flat sampling revealed variable bait scatter into aquatic environments, from 0-46.3 kg/ha across the two drops. No differences were found in average bait densities among 1-, 4-, and 7-m distances from high tide lines. Our methods might broadly assist bait density (and other) surveys under challenging circumstances

    Assessing spatial variation and overall density of aerially broadcast toxic bait during a rat eradication on Palmyra

    Get PDF
    Abstract Baits containing brodifacoum rodenticide were aerially applied to eradicate invasive black rats from Palmyra Atoll, an important biodiversity center. Bait application must be sufficient to be effective, while minimizing environmental hazards by not exceeding designated label rates, prompting our bait density assessments for two aerial drops. With few physical or human resources on this remote, uninhabited atoll, assessments were particularly challenging, requiring observations within 30 min of aerial application to avoid bait loss to rats, crabs, or elements. We estimated bait density using quadrat sampling within 13 terrestrial sampling areas. We also sampled 10 tidal flat areas to assess inadvertent bait scatter into marine aquatic environments. Of particular value for challenging sampling circumstances, our quadrats had to be lightweight and durable, which we addressed by using widely available PVC hoops ("Hula Hoops"), the size of which was ideal for sampling purposes. At 77.5 and 78.7 kg/ha, overall bait densities were very near to the target densities of 80 and 75 kg/ha, respectively. However, considerable variability in bait densities existed among sampled areas, 8.6-178.2 and 31.4-129.5 kg/ha for the respective drops. Environmental, human, and equipment factors likely accounted for this variability. Tidal flat sampling revealed variable bait scatter into aquatic environments, from 0-46.3 kg/ha across the two drops. No differences were found in average bait densities among 1-, 4-, and 7-m distances from high tide lines. Our methods might broadly assist bait density (and other) surveys under challenging circumstances

    Assessing spatial variation and overall density of aerially broadcast toxic bait during a rat eradication on Palmyra

    Get PDF
    Abstract Baits containing brodifacoum rodenticide were aerially applied to eradicate invasive black rats from Palmyra Atoll, an important biodiversity center. Bait application must be sufficient to be effective, while minimizing environmental hazards by not exceeding designated label rates, prompting our bait density assessments for two aerial drops. With few physical or human resources on this remote, uninhabited atoll, assessments were particularly challenging, requiring observations within 30 min of aerial application to avoid bait loss to rats, crabs, or elements. We estimated bait density using quadrat sampling within 13 terrestrial sampling areas. We also sampled 10 tidal flat areas to assess inadvertent bait scatter into marine aquatic environments. Of particular value for challenging sampling circumstances, our quadrats had to be lightweight and durable, which we addressed by using widely available PVC hoops ("Hula Hoops"), the size of which was ideal for sampling purposes. At 77.5 and 78.7 kg/ha, overall bait densities were very near to the target densities of 80 and 75 kg/ha, respectively. However, considerable variability in bait densities existed among sampled areas, 8.6-178.2 and 31.4-129.5 kg/ha for the respective drops. Environmental, human, and equipment factors likely accounted for this variability. Tidal flat sampling revealed variable bait scatter into aquatic environments, from 0-46.3 kg/ha across the two drops. No differences were found in average bait densities among 1-, 4-, and 7-m distances from high tide lines. Our methods might broadly assist bait density (and other) surveys under challenging circumstances

    Diverse examples from managing invasive vertebrate species on inhabited islands of the United States

    Get PDF
    A wide array of sizes, ecosystems, cultures, and invasive wildlife are represented among inhabited islands. Here, six cases from the United States of America (US) are selected to illustrate the high diversity of invasive animal management issues and objectives. We outline the background, define the problems and management objectives. We identify the management approaches and discuss the results and influences as they specifically relate to inhabited islands. The examples are: (1) Gambian giant pouched rats on Grassy Key, Florida; (2) coqui frogs on Kaua’i, Hawai’i; (3) feral swine on Cayo Costa Island, Florida; (4) rodents and monitor lizards on Cocos Island, Guam; (5) black spiny-tailed iguanas (ctenosaurs) on Gasparilla Island, Florida; and (6) mongooses on Puerto Rico. The outcomes of the programs are discussed, particularly in relation to the impact of human habitation on success

    Large carnivore science: non-experimental studies are useful, but experiments are better

    Get PDF
    1. Response to Bruskotter and colleagues We recently described the following six interrelated issues that justify questioning some of the discourse about the reliability of the literature on the ecological roles of large carnivores (Allen et al., in press): 1. The overall paucity of available data, 2. The reliability of carnivore population sampling techniques, 3. The general disregard for alternative hypotheses to top-down forcing, 4. The lack of applied science studies, 5. The frequent use of logical fallacies, 6. The generalisation of results from relatively pristine systems to those substantially altered by humans. We thank Bruskotter et al. (2017) for responding to our concerns and engaging with this important issue. We agree completely that nonexperimental studies can and do often have great value, and we recognize that in many (most) cases these types of studies may provide the only data that are available. We acknowledge the many challenges of working on large, cryptic, dangerous, and highly-mobile animals in the wild. However, the absence of more robust data and the reality of these challenges do not excuse weak inference or overstating conclusions – a practice apparent in many studies (and communication of those studies) adopting only observational or correlative methods to infer the roles of large carnivores (reviewed in Allen et al., in press)

    Eliciting a predatory response in the eastern corn snake (Pantherophis guttatus) using live and inanimate sensory stimuli: implications for managing invasive populations

    Get PDF
    North America's Eastern corn snake (Pantherophis guttatus) has been introduced to several islands throughout the Caribbean and Australasia where it poses a significant threat to native wildlife. Invasive snake control programs often involve trapping with live bait, a practice that, as well as being costly and labour intensive, raises welfare and ethical concerns. This study assessed corn snake response to live and inanimate sensory stimuli in an attempt to inform possible future trapping of the species and the development of alternative trap lures. We exposed nine individuals to sensory cues in the form of odour, visual, vibration and combined stimuli and measured the response (rate of tongue-flick [RTF]). RTF was significantly higher in odour and combined cues treatments, and there was no significant difference in RTF between live and inanimate cues during odour treatments. Our findings suggest chemical cues are of primary importance in initiating predation and that an inanimate odour stimulus, absent of simultaneous visual and vibratory cues, is a potential low-cost alternative trap lure for the control of invasive corn snake populations
    • …
    corecore