312 research outputs found

    Automated beam steering software

    Get PDF

    Estimating a Personalized Basal Insulin Dose from Short-Term Closed-Loop Data in Type 2 Diabetes

    Full text link
    In type 2 diabetes (T2D) treatment, finding a safe and effective basal insulin dose is a challenge. The dose-response is highly individual and to ensure safety, people with T2D titrate by slowly increasing the daily insulin dose to meet treatment targets. This titration can take months. To ease and accelerate the process, we use short-term artificial pancreas (AP) treatment tailored for initial titration and apply it as a diagnostic tool. Specifically, we present a method to automatically estimate a personalized daily dose of basal insulin from closed-loop data collected with an AP. Based on AP-data from a stochastic simulation model, we employ the continuous-discrete extended Kalman filter and a maximum likelihood approach to estimate parameters in a simple dose-response model for 100 virtual people. With the identified model, we compute a daily dose of basal insulin to meet treatment targets for each individual. We test the personalized dose and evaluate the treatment outcomes against clinical reference values. In the tested simulation setup, the proposed method is feasible. However, more extensive tests will reveal whether it can be deemed safe for clinical implementation.Comment: 6 pages, 4 figures, 1 table. Accepted for publication in Proceedings of the 2022 61st IEEE Conference on Decision and Control (CDC

    Sphinx measurements of the 2009 solar minimum x-ray emission

    Get PDF
    The SphinX X-ray spectrophotometer on the CORONAS-PHOTON spacecraft measured soft X-ray emission in the 1-15 keV energy range during the deep solar minimum of 2009 with a sensitivity much greater than GOES. Several intervals are identified when the X-ray flux was exceptionally low, and the flux and solar X-ray luminosity are estimated. Spectral fits to the emission at these times give temperatures of 1.7-1.9 MK and emission measures between 4 x 10^47 cm^-3 and 1.1 x 10^48 cm^-3. Comparing SphinX emission with that from the Hinode X-ray Telescope, we deduce that most of the emission is from general coronal structures rather than confined features like bright points. For one of 27 intervals of exceptionally low activity identified in the SphinX data, the Sun's X-ray luminosity in an energy range roughly extrapolated to that of ROSAT (0.1-2.4 keV) was less than most nearby K and M dwarfs.Comment: Astrophysical Journal, in press. 14 pp, 3 figure

    Relaxation Methods for Mixed-Integer Optimal Control of Partial Differential Equations

    Full text link
    We consider integer-restricted optimal control of systems governed by abstract semilinear evolution equations. This includes the problem of optimal control design for certain distributed parameter systems endowed with multiple actuators, where the task is to minimize costs associated with the dynamics of the system by choosing, for each instant in time, one of the actuators together with ordinary controls. We consider relaxation techniques that are already used successfully for mixed-integer optimal control of ordinary differential equations. Our analysis yields sufficient conditions such that the optimal value and the optimal state of the relaxed problem can be approximated with arbitrary precision by a control satisfying the integer restrictions. The results are obtained by semigroup theory methods. The approach is constructive and gives rise to a numerical method. We supplement the analysis with numerical experiments
    corecore