1,611 research outputs found

    Tripartite phase separation of two signal effectors with vesicles priming B cell responsiveness.

    Get PDF
    Antibody-mediated immune responses rely on antigen recognition by the B cell antigen receptor (BCR) and the proper engagement of its intracellular signal effector proteins. Src homology (SH) 2 domain-containing leukocyte protein of 65 kDa (SLP65) is the key scaffold protein mediating BCR signaling. In resting B cells, SLP65 colocalizes with Cbl-interacting protein of 85 kDa (CIN85) in cytoplasmic granules whose formation is not fully understood. Here we show that effective B cell activation requires tripartite phase separation of SLP65, CIN85, and lipid vesicles into droplets via vesicle binding of SLP65 and promiscuous interactions between nine SH3 domains of the trimeric CIN85 and the proline-rich motifs (PRMs) of SLP65. Vesicles are clustered and the dynamical structure of SLP65 persists in the droplet phase in vitro. Our results demonstrate that phase separation driven by concerted transient interactions between scaffold proteins and vesicles is a cellular mechanism to concentrate and organize signal transducers

    Anisotropic Carbon Nanotube Structures with High Aspect Ratio Nanopores for Li-Ion Battery Anodes.

    Get PDF
    Technological advances in membrane technology, catalysis, and electrochemical energy storage require the fabrication of controlled pore structures at ever smaller length scales. It is therefore important to develop processes allowing for the fabrication of materials with controlled submicron porous structures. We propose a combination of colloidal lithography and chemical vapor deposition of carbon nanotubes to create continuous straight pores with diameters down to 100 nm in structures with thicknesses of more than 300 μm. These structures offer unique features, including continuous and parallel pores with aspect ratios in excess of 3000, a low pore tortuosity, good electrical conductivity, and electrochemical stability. We demonstrate that these structures can be used in Li-ion batteries by coating the carbon nanotubes with Si as an active anode material

    The Dynactin Complex Enhances the Speed of Microtubule-Dependent Motions of Adenovirus Both Towards and Away from the Nucleus

    Get PDF
    Unlike transport vesicles or organelles, human adenovirus (HAdV) directly binds to the microtubule minus end-directed motor dynein for transport to the nucleus. The dynein cofactor dynactin enhances nuclear transport of HAdV and boosts infection. To determine if dynactin has a specific role in cytoplasmic trafficking of incoming HAdV on microtubules, we used live cell spinning disc confocal microscopy at 25 Hz acquisition frequency and automated tracking of single virus particles at 20–50 nm spatial resolution. Computational dissection by machine-learning algorithms extracted specific motion patterns of viral trajectories. We found that unperturbed cells supported two kinds of microtubule-dependent motions, directed motions (DM) and fast drifts (FD). DM had speeds of 0.2 to 2 μm/s and run lengths of 0.4 up to 7 μm, while FD were slower and less extensive at 0.02 to 0.4 μm/s and 0.05 to 2.5 μm. Dynactin interference by overexpression of p50/dynamitin or a coiled-coil domain of p150/Glued reduced the speeds and amounts of both center- and periphery-directed DM but not FD, and inhibited infection. These results indicate that dynactin enhances adenovirus infection by increasing the speed and efficiency of dynein-mediated virus motion to the nucleus, and, surprisingly, also supports a hereto unknown motor activity for virus transport to the cell periphery

    Wasting away in Mars-Aritaville

    Get PDF

    A reduced-reference perceptual image and video quality metric based on edge preservation

    Get PDF
    In image and video compression and transmission, it is important to rely on an objective image/video quality metric which accurately represents the subjective quality of processed images and video sequences. In some scenarios, it is also important to evaluate the quality of the received video sequence with minimal reference to the transmitted one. For instance, for quality improvement of video transmission through closed-loop optimisation, the video quality measure can be evaluated at the receiver and provided as feedback information to the system controller. The original image/video sequence-prior to compression and transmission-is not usually available at the receiver side, and it is important to rely at the receiver side on an objective video quality metric that does not need reference or needs minimal reference to the original video sequence. The observation that the human eye is very sensitive to edge and contour information of an image underpins the proposal of our reduced reference (RR) quality metric, which compares edge information between the distorted and the original image. Results highlight that the metric correlates well with subjective observations, also in comparison with commonly used full-reference metrics and with a state-of-the-art RR metric. © 2012 Martini et al

    Intra-oral compartment pressures: a biofunctional model and experimental measurements under different conditions of posture

    Get PDF
    Oral posture is considered to have a major influence on the development and reoccurrence of malocclusion. A biofunctional model was tested with the null hypotheses that (1) there are no significant differences between pressures during different oral functions and (2) between pressure measurements in different oral compartments in order to substantiate various postural conditions at rest by intra-oral pressure dynamics. Atmospheric pressure monitoring was simultaneously carried out with a digital manometer in the vestibular inter-occlusal space (IOS) and at the palatal vault (sub-palatal space, SPS). Twenty subjects with normal occlusion were evaluated during the open-mouth condition (OC), gently closed lips (semi-open compartment condition, SC), with closed compartments after the generation of a negative pressure (CCN) and swallowing (SW). Pressure curve characteristics were compared between the different measurement phases (OC, SC, CCN, SW) as well as between the two compartments (IOS, SPS) using analysis of variance and Wilcoxon matched-pairs tests adopting a significance level of α = 0.05. Both null hypotheses were rejected. Average pressures (IOS, SPS) in the experimental phases were 0.0, −0.08 (OC); −0.16, −1.0 (SC); −48.79, −81.86 (CCN); and −29.25, −62.51 (SW) mbar. CCN plateau and peak characteristics significantly differed between the two compartments SPS and IOS. These results indicate the formation of two different intra-oral functional anatomical compartments which provide a deeper understanding of orofacial biofunctions and explain previous observations of negative intra-oral pressures at rest

    Increased Recombination Between Active tRNA Genes

    Full text link
    Transfer RNA genes are distributed throughout eukaryotic genomes, and are frequently found as multicopy families. In Saccharomyces cerevisiae, tRNA gene transcription by RNA polymerase III suppresses nearby transcription by RNA polymerase II, partially because the tRNA genes are clustered near the nucleolus. We have tested whether active transcription of tRNA genes might also suppress recombination, since recombination between identical copies of the repetitive tRNA genes could delete intervening genes and be detrimental to survival. The opposite proved to be the case. Recombination between active tRNA genes was elevated, but only when both genes are transcribed. We also tested the effects of tRNA genes on recombination between the direct terminal repeats of a neighboring retrotransposon, since most Ty retrotransposons reside next to tRNA genes, and the selective advantage of this arrangement is not known.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/63113/1/dna.2006.25.359.pd
    • …
    corecore