40 research outputs found

    Butyrate Transcriptionally Enhances Peptide Transporter PepT1 Expression and Activity

    Get PDF
    Background: PepT1, an intestinal epithelial apical di/tripeptide transporter, is normally expressed in the small intestine and induced in colon during chronic inflammation. This study aimed at investigating PepT1 regulation by butyrate, a short-chain fatty acid produced by commensal bacteria and accumulated inside inflamed colonocyte. Results: We found that butyrate treatment of human intestinal epithelial Caco2-BBE cells increased human PepT1 (hPepT1) promoter activity in a dose- and time-dependent manner, with maximal activity observed in cells treated with 5 mM butyrate for 24 h. Under this condition, hPepT1 promoter activity, mRNA and protein expression levels were increased as assessed by luciferase assay, real-time RT-PCR and Western blot, respectively. hPepT1 transport activity was accordingly increased by,2.5-fold. Butyrate did not alter hPepT1 mRNA half-life indicating that butyrate acts at the transcriptional level. Molecular analyses revealed that Cdx2 is the most important transcription factor for butyrate-induced increase of hPepT1 expression and activity in Caco2-BBE cells. Butyrate-activated Cdx2 binding to hPepT1 promoter was confirmed by gel shift and chromatin immunoprecipitation. Moreover, Caco2-BBE cells overexpressing Cdx2 exhibited greater hPepT1 expression level than wild-type cells. Finally, treatment of mice with 5 mM butyrate added to drinking water for 24 h increased colonic PepT1 mRNA and protein expression levels, as well as enhanced PepT1 transport activity in colonic apical membranes vesicles

    Shocked monazite chronometry: integrating microstructural and in situ isotopic age data for determining precise impact ages

    Get PDF
    Monazite is a robust geochronometer and occurs in a wide range of rock types. Monazite also records shock deformation from meteorite impact but the effects of impact-related microstructures on the U–Th–Pb systematics remain poorly constrained. We have, therefore, analyzed shock-deformed monazite grains from the central uplift of the Vredefort impact structure, South Africa, and impact melt from the Araguainha impact structure, Brazil, using electron backscatter diffraction, electron microprobe elemental mapping, and secondary ion mass spectrometry (SIMS). Crystallographic orientation mapping of monazite grains from both impact structures reveals a similar combination of crystal-plastic deformation features, including shock twins, planar deformation bands and neoblasts. Shock twins were documented in up to four different orientations within individual monazite grains, occurring as compound and/or type one twins in (001), (100), (10 1 ¯) , {110}, { 212 } , and type two (irrational) twin planes with rational shear directions in [ 0 1 ¯ 1 ¯ ] and [ 1 ¯ 1 ¯ 0 ]. SIMS U–Th–Pb analyses of the plastically deformed parent domains reveal discordant age arrays, where discordance scales with increasing plastic strain. The correlation between discordance and strain is likely a result of the formation of fast diffusion pathways during the shock event. Neoblasts in granular monazite domains are strain-free, having grown during the impact events via consumption of strained parent grains. Neoblastic monazite from the Inlandsee leucogranofels at Vredefort records a 207Pb/206Pb age of 2010 ± 15 Ma (2σ, n = 9), consistent with previous impact age estimates of 2020 Ma. Neoblastic monazite from Araguainha impact melt yield a Concordia age of 259 ± 5 Ma (2σ, n = 7), which is consistent with previous impact age estimates of 255 ± 3 Ma. Our results demonstrate that targeting discrete microstructural domains in shocked monazite, as identified through orientation mapping, for in situ U–Th–Pb analysis can date impact-related deformation. Monazite is, therefore, one of the few high-temperature geochronometers that can be used for accurate and precise dating of meteorite impacts

    EMD in periodontal regenerative surgery modulates cytokine profiles: A randomised controlled clinical trial

    Get PDF
    The enamel matrix derivative (EMD) contains hundreds of peptides in different levels of proteolytic processing that may provide a range of biological effects of importance in wound healing. The aim of the present study was to compare the effect of EMD and its fractions on the cytokine profiles from human gingival fibroblasts in vitro and in gingival crevicular fluid (GCF) in a randomized controlled split-mouth clinical study (n = 12). Levels of cytokines in cell culture medium and in GCF were measured by Luminex over a 2-week period. In the clinical study, levels of pro-inflammatory cytokines and chemokines were increased, whereas the levels of transforming growth factor-α (TGF-α) and platelet-derived growth factor-BB (PDGF-BB) were reduced. The in vitro study showed that EMD and its high and low molecular weight fractions reduced the secretion of pro-inflammatory cytokines and chemokines compared to untreated cells. EMD had an effect on levels of cytokines related to fibroplasia, angiogenesis, inflammation and chemotaxis both in vitro and in vivo, however, the anti-inflammatory effect induced by EMD observed in the in vitro study could not be confirmed clinically
    corecore