2,413 research outputs found

    Nucleon electromagnetic form factors from lattice QCD using a nearly physical pion mass

    Get PDF
    We present lattice QCD calculations of nucleon electromagnetic form factors using pion masses mπm_\pi = 149, 202, and 254 MeV and an action with clover-improved Wilson quarks coupled to smeared gauge fields, as used by the Budapest-Marseille-Wuppertal collaboration. Particular attention is given to removal of the effects of excited state contamination by calculation at three source-sink separations and use of the summation and generalized pencil-of-function methods. The combination of calculation at the nearly physical mass mπm_\pi = 149 MeV in a large spatial volume (mπLsm_\pi L_s = 4.2) and removal of excited state effects yields agreement with experiment for the electric and magnetic form factors GE(Q2)G_E(Q^2) and GM(Q2)G_M(Q^2) up to Q2Q^2 = 0.5 GeV2^2.Comment: v2: published version; 30 pages, 25 figures, 6 table

    Quark Contributions to Nucleon Momentum and Spin from Domain Wall fermion calculations

    Full text link
    We report contributions to the nucleon spin and momentum from light quarks calculated using dynamical domain wall fermions with pion masses down to 300 MeV and fine lattice spacing a=0.084 fm. Albeit without disconnected diagrams, we observe that spin and orbital angular momenta of both u and d quarks are opposite, almost canceling in the case of the d quark, which agrees with previous calculations using a mixed quark action. We also present the full momentum dependence of n=2 generalized form factors showing little variation with the pion mass.Comment: 7 pages, 5 figures, NT-LBNL-11-020, MIT-CTP-4323. Presented at the 29th International Symposium on Lattice Field Theory (Lattice 2011), Squaw Valley, California, 10-16 Jul 201

    Signals of confinement in Green functions of SU(2) Yang-Mills theory

    Full text link
    The vortex picture of confinement is employed to explore the signals of confinement in Yang-Mills Green functions. By using SU(2) lattice gauge theory, it has been well established that the removal of the center vortices from the lattice configurations results in the loss of confinement. The running coupling constant, the gluon and the ghost form factors are studied in Landau gauge for both cases, the full and the vortex removed theory. In the latter case, a strong suppression of the running coupling constant and the gluon form factor at low momenta is observed. At the same time, the singularity of the ghost form factor at vanishing momentum disappears. This observation establishes an intimate correlation between the ghost singularity and confinement. The result also shows that a removal of the vortices generates a theory for which Zwanziger's horizon condition for confinement is no longer satisfied.Comment: 4 pages, 4 figure

    Cardiac activity impacts cortical motor excitability

    Get PDF
    Human cognition and action can be influenced by internal bodily processes such as heartbeats. For instance, somatosensory perception is impaired both during the systolic phase of the cardiac cycle and when heartbeats evoke stronger cortical responses. Here, we test whether these cardiac effects originate from overall changes in cortical excitability. Cortical and corticospinal excitability were assessed using electroencephalographic and electromyographic responses to transcranial magnetic stimulation while concurrently monitoring cardiac activity with electrocardiography. Cortical and corticospinal excitability were found to be highest during systole and following stronger cortical responses to heartbeats. Furthermore, in a motor task, hand-muscle activity and the associated desynchronization of sensorimotor oscillations were stronger during systole. These results suggest that systolic cardiac signals have a facilitatory effect on motor excitability – in contrast to sensory attenuation that was previously reported for somatosensory perception. Thus, distinct time windows may exist across the cardiac cycle that either optimize perception or action

    Topological Susceptibility of Yang-Mills Center Projection Vortices

    Get PDF
    The topological susceptibility induced by center projection vortices extracted from SU(2) lattice Yang-Mills configurations via the maximal center gauge is measured. Two different smoothing procedures, designed to eliminate spurious ultraviolet fluctuations of these vortices before evaluating the topological charge, are explored. They result in consistent estimates of the topological susceptibility carried by the physical thick vortices characterizing the Yang-Mills vacuum in the vortex picture. This susceptibility is comparable to the one obtained from the full lattice Yang-Mills configurations. The topological properties of the SU(2) Yang-Mills vacuum can thus be accounted for in terms of its vortex content.Comment: 12 revtex pages, 6 ps figures included using eps

    The band structure of BeTe - a combined experimental and theoretical study

    Full text link
    Using angle-resolved synchrotron-radiation photoemission spectroscopy we have determined the dispersion of the valence bands of BeTe(100) along ΓX\Gamma X, i.e. the [100] direction. The measurements are analyzed with the aid of a first-principles calculation of the BeTe bulk band structure as well as of the photoemission peaks as given by the momentum conserving bulk transitions. Taking the calculated unoccupied bands as final states of the photoemission process, we obtain an excellent agreement between experimental and calculated spectra and a clear interpretation of almost all measured bands. In contrast, the free electron approximation for the final states fails to describe the BeTe bulk band structure along ΓX\Gamma X properly.Comment: 21 pages plus 4 figure

    Nucleon Electromagnetic Form Factors from Lattice QCD using 2+1 Flavor Domain Wall Fermions on Fine Lattices and Chiral Perturbation Theory

    Full text link
    We present a high-statistics calculation of nucleon electromagnetic form factors in Nf=2+1N_f=2+1 lattice QCD using domain wall quarks on fine lattices, to attain a new level of precision in systematic and statistical errors. Our calculations use 323×6432^3 \times 64 lattices with lattice spacing a=0.084 fm for pion masses of 297, 355, and 403 MeV, and we perform an overdetermined analysis using on the order of 3600 to 7000 measurements to calculate nucleon electric and magnetic form factors up to Q2≈Q^2 \approx 1.05 GeV2^2. Results are shown to be consistent with those obtained using valence domain wall quarks with improved staggered sea quarks, and using coarse domain wall lattices. We determine the isovector Dirac radius r1vr_1^v, Pauli radius r2vr_2^v and anomalous magnetic moment κv\kappa_v. We also determine connected contributions to the corresponding isoscalar observables. We extrapolate these observables to the physical pion mass using two different formulations of two-flavor chiral effective field theory at one loop: the heavy baryon Small Scale Expansion (SSE) and covariant baryon chiral perturbation theory. The isovector results and the connected contributions to the isoscalar results are compared with experiment, and the need for calculations at smaller pion masses is discussed.Comment: 44 pages, 40 figure

    Evidence for fine tuning of fermionic modes in lattice gluodynamics

    Full text link
    We consider properties of zero and near-zero fermionic modes in lattice gluodynamics. The modes are known to be sensitive to the topology of the underlying gluonic fields in the quantum vacuum state of the gluodynamics. We find evidence that these modes are fine tuned, that is exhibit sensitivity to both physical (one can say, hadronic) scale and to the ultraviolet cutoff. Namely, the density of the states is in physical units while the localization volume of the modes tends to zero in physical units with the lattice spacing tending to zero. We discuss briefly possible theoretical implications and also include some general, review-type remarks.Comment: 7 pages, 7 eps figures, uses JETP Letters style (included); substantial stylistic changes, discussions added, conclusions unchanged. Supplementary materials and computer animations are available at http://lattice.itep.ru/overla
    • …
    corecore