3,544 research outputs found

    Energy Density of Vortices in the Schroedinger Picture

    Get PDF
    The one-loop energy density of an infinitely thin static magnetic vortex in SU(2) Yang-Mills theory is evaluated using the Schroedinger picture. Both the gluonic fluctuations as well as the quarks in the vortex background are included. The energy density of the magnetic vortex is discussed as a function of the magnetic flux. The center vortices correspond to local minima in the effective potential. These minima are degenerated with the perturbative vacuum if the fermions are ignored. Inclusion of fermions lifts this degeneracy, raising the vortex energy above the energy of the perturbative vacuum.Comment: 25 pages, 2 figure

    The Ice-Rock Interface and Basal Sliding Process as Revealed by Direct Observation in Bore Holes and Tunnels

    Get PDF
    The glacier bed, where basal sliding occurs, was reached by cable-tool drilling and sand-pump bailing in seven bore holes in Blue Glacier, Olympic National Park, Washington. Basal sliding velocities measured by bore-hole photography and confirmed by inclinometry are unexpectedly low, ranging from 0.3 to 3.0 cm/day and averaging 1.0 cm/day. This is much less than about half the surface velocity of 15 cm/day, which was the sliding-rate expected from earlier deformation measurements in bore holes made by thermal drilling alone

    Cryo-electron microscopy of an extremely halophilic microbe: technical aspects

    No full text
    Most halophilic Archaea of the class Halobacteriaceae depend on the presence of several molar sodium chloride for growth and cell integrity. This poses problems for structural studies, particularly for electron microscopy, where the high salt concentration results in diminished contrast. Since cryo-electron microscopy of intact cells provides new insights into the cellular and molecular organization under close-to-live conditions, we evaluated strategies and conditions to make halophilic microbes available for investigations in situ. Halobacterium salinarum, the test organism for this study, usually grows at 4.3 M NaCl. Adaptation to lower concentrations and subsequent NaCl reduction via dialysis led to still vital cells at 3 M salt. A comprehensive evaluation of vitrification parameters, thinning of frozen cells by focused-ion-beam micromachining, and cryo-electron microscopy revealed that structural studies under high salt conditions are possible in situ

    Restorative Justice-Informed Moral Acquaintance: Resolving the Dual Role Problem in Correctional and Forensic Practice

    Get PDF
    The issue of dual roles within forensic and correctional fields has typically been conceptualized as dissonance—experienced by practitioners— when attempting to adhere to the conflicting ethical requirements associated with client well-being and community protection. In this paper, we argue that the dual role problem should be conceptualized more broadly; to incorporate the relationship between the offender and their victim. We also propose that Restorative Justice (RJ) is able to provide a preliminary ethical framework to deal with this common ethical oversight. Furthermore, we unite the RJ framework with that of Ward’s (2013) moral acquaintance model to provide a more powerful approach—RJ informed moral acquaintance—aimed at addressing the ethical challenges faced by practitioners within forensic and correctional roles

    Observation of Basal Sliding of Variegated Glacier, Alaska

    Get PDF
    Variegated Glacier is a surge-type glacier in the St Elias mountain range in Alaska. The interval between surges is about 20 years; the last one occurred in 1964 to 1965. This glacier has been studied extensively since 1973 (Bindschadler and others, 1977). Thus far, measurements of ice velocities have been restricted to the surface. They have been analyzed using geophysically measured ice depths, in order to estimate ice velocities in the ice mass and at the base (Bindschadler and others, 1978). From 1973 to 1977 the distribution of annual ice velocities along most of the length of the glacier can be explained primarily by internal deformation without major contribution from sliding at the base. However, the variation of surface velocity with time gives definite indication that sliding occurs in summer and that the average summer rate is increasing progressively from summer to summer and that in a zone 5 to 7 km below the head of the glacier the summer-to-summer increase in inferred sliding rate is especially rapid. This is a notably distinguishing feature, which is probably indicative of a build-up toward the next surge. In order to obtain direct information about sliding-rates and water pressures at the base in this zone, a bore hole was drilled to the bottom of the glacier about 6 km below the glacier head. Observations in the hole started in June 1978 and were continued until 31 July 1978. The hole connected to an englacial water system at a depth of 204 m whereupon the water level dropped gradually to about 100 m below the surface. The last 6 m above-the base at 356 m could be drilled only by means of a cable tool because of the presence of debris-rich ice. Upon reaching the bottom, the water level increased rapidly to the firn water table at about 8 m below surface. Large variations in water level of about 200 m occurred during the following period of observation of 35 d. Major events such as audible icequakes, heavy rainfalls, and a period of unusually high ablation were associated with abrupt increases of water level up to the firn water table. High water pressure at the bottom drove a flow of muddy and sandy water upward in the hole. Consequently high freezing rates in the lower 150 m of the hole produced a very rough bore-hole wall covered with ledges, coral-reef-like features, grooves, and pockets filled with sand. Near the bottom, embedded rocks stuck out of the bore-hole wall. These features were recognized by bore-hole television. The bore-hole bottom consisted of sand which continuously proliferated and washed into the hole. Attempts to remove this sand by means of a sand pump failed, the bailed-out sand being replaced immediately. From bore-hole inclinometry an internal deformation of the ice mass of 0.22 m d^(−1) was obtained. Together with average surface velocity of 0.47 m d^(−1) we get a sliding velocity of 0.25 m d^(−1), averaged over the time of observation. This result confirms the sliding velocities inferred from surface velocity measurements. It also lies on the exponential trend line of increasing summer-to-summer velocities showing a doubling of sliding velocities about every two years (Bindschadler and others, unpublished). This strongly indicates that the next surge is likely to occur in the early eighties. Input of water from the surface probably will play a role in triggering the surge

    The intrinsic strangeness and charm of the nucleon using improved staggered fermions

    Full text link
    We calculate the intrinsic strangeness of the nucleon, - , using the MILC library of improved staggered gauge configurations using the Asqtad and HISQ actions. Additionally, we present a preliminary calculation of the intrinsic charm of the nucleon using the HISQ action with dynamical charm. The calculation is done with a method which incorporates features of both commonly-used methods, the direct evaluation of the three-point function and the application of the Feynman- Hellman theorem. We present an improvement on this method that further reduces the statistical error, and check the result from this hybrid method against the other two methods and find that they are consistent. The values for and found here, together with perturbative results for heavy quarks, show that dark matter scattering through Higgs-like exchange receives roughly equal contributions from all heavy quark flavors.Comment: 17 pages, 14 figure

    A Minimum-Labeling Approach for Reconstructing Protein Networks across Multiple Conditions

    Get PDF
    The sheer amounts of biological data that are generated in recent years have driven the development of network analysis tools to facilitate the interpretation and representation of these data. A fundamental challenge in this domain is the reconstruction of a protein-protein subnetwork that underlies a process of interest from a genome-wide screen of associated genes. Despite intense work in this area, current algorithmic approaches are largely limited to analyzing a single screen and are, thus, unable to account for information on condition-specific genes, or reveal the dynamics (over time or condition) of the process in question. Here we propose a novel formulation for network reconstruction from multiple-condition data and devise an efficient integer program solution for it. We apply our algorithm to analyze the response to influenza infection in humans over time as well as to analyze a pair of ER export related screens in humans. By comparing to an extant, single-condition tool we demonstrate the power of our new approach in integrating data from multiple conditions in a compact and coherent manner, capturing the dynamics of the underlying processes.Comment: Peer-reviewed and presented as part of the 13th Workshop on Algorithms in Bioinformatics (WABI2013

    On the Spectrum of QCD(1+1) with SU(N_c) Currents

    Get PDF
    Extending previous work, we calculate in this note the fermionic spectrum of two-dimensional QCD (QCD_2) in the formulation with SU(N_c) currents. Together with the results in the bosonic sector this allows to address the as yet unresolved task of finding the single-particle states of this theory as a function of the ratio of the numbers of flavors and colors, \lambda=N_f/N_c, anew. We construct the Hamiltonian matrix in DLCQ formulation as an algebraic function of the harmonic resolution K and the continuous parameter \lambda. Amongst the more surprising findings in the fermionic sector chiefly considered here is that the fermion momentum is a function of \lambda. This dependence is necessary in order to reproduce the well-known 't Hooft and large N_f spectra. Remarkably, those spectra have the same single-particle content as the ones in the bosonic sectors. The twist here is the dramatically different sizes of the Fock bases in the two sectors, which makes it possible to interpret in principle all states of the discrete approach. The hope is that some of this insight carries over into the continuum. We also present some new findings concerning the single-particle spectrum of the adjoint theory.Comment: 21 pp., 13 figures, version published in PR

    Nucleon Electromagnetic Form Factors from Lattice QCD using 2+1 Flavor Domain Wall Fermions on Fine Lattices and Chiral Perturbation Theory

    Full text link
    We present a high-statistics calculation of nucleon electromagnetic form factors in Nf=2+1N_f=2+1 lattice QCD using domain wall quarks on fine lattices, to attain a new level of precision in systematic and statistical errors. Our calculations use 323×6432^3 \times 64 lattices with lattice spacing a=0.084 fm for pion masses of 297, 355, and 403 MeV, and we perform an overdetermined analysis using on the order of 3600 to 7000 measurements to calculate nucleon electric and magnetic form factors up to Q2≈Q^2 \approx 1.05 GeV2^2. Results are shown to be consistent with those obtained using valence domain wall quarks with improved staggered sea quarks, and using coarse domain wall lattices. We determine the isovector Dirac radius r1vr_1^v, Pauli radius r2vr_2^v and anomalous magnetic moment κv\kappa_v. We also determine connected contributions to the corresponding isoscalar observables. We extrapolate these observables to the physical pion mass using two different formulations of two-flavor chiral effective field theory at one loop: the heavy baryon Small Scale Expansion (SSE) and covariant baryon chiral perturbation theory. The isovector results and the connected contributions to the isoscalar results are compared with experiment, and the need for calculations at smaller pion masses is discussed.Comment: 44 pages, 40 figure
    • …
    corecore