174 research outputs found
Magnetic Interaction Reversal in Watermelon Nanostructured Cr-Doped Fe Nanoclusters
Cr-doped core-shell Fe/Fe-oxide nanoclusters (NCs) were synthesized at varied atomic percentages of Cr from 0 at. % to 8 at. %. The low concentrations of Cr (%) were selected in order to inhibit the complete conversion of the Fe-oxide shell to Cr2O3 and the Fe core to FeCr alloy. The magnetic interaction in Fe/Fe-oxide NCs (~25 nm) can be controlled by antiferromagnetic Cr-dopant. We report the origin of σ-FeCr phase at very low Cr concentration (2 at. %) unlike in previous studies, and the interaction reversal from dipolar to exchange interaction in watermelon-like Cr-doped core-shell NCs
Germanium-76 Sample Analysis
The MAJORANA DEMONSTRATOR is a large array of ultra-low background high-purity germanium detectors, enriched in 76Ge, designed to search for zero-neutrino double-beta decay (0νββ). The DEMONSTRATOR will utilize 76Ge from Russia, and the first one gram sample was received from the supplier for analysis on April 24, 2011. The Environmental Molecular Sciences facility, a DOE user facility at PNNL, was used to make the required isotopic and chemical purity measurements that are essential to the quality assurance for the MAJORANA DEMONSTRATOR. The results of this first analysis are reported here
Recommended from our members
Compositional Tuning of Ultrathin Surface Oxides on Metal and Alloy Substrates Using Photons: Dynamic Simulations and Experiments
We report on the ability to modify the structure and composition of ultrathin oxides grown on Ni and Ni-Al alloy surfaces at room temperature utilizing photon illumination. We find that the nickel-oxide formation is enhanced in the case of oxidation under photo-excitation. The enhanced oxidation kinetics of nickel in 5% Ni-Al alloy is corroborated by experimental and simulation studies of natural and photon-assisted oxide growth on pure Ni(100) surfaces. In case of pure Ni substrates, combined x-ray photoelectron spectroscopy analysis, and atomic force microscope current mapping support the deterministic role of the structure of nickel passive-oxide films on their nanoscale corrosion resistance. Atomistic simulations involving dynamic charge transfer predict that the applied electric field overcomes the activation-energy barrier for ionic migration, leading to enhanced oxygen incorporation into the oxide, enabling us to tune the mixed-oxide composition at atomic length scales. Atomic scale control of ultrathin oxide structure and morphology in the case of pure substrates as well as compositional tuning of complex oxide in the case of alloys leads to excellent passivity as verified from potentiodynamic polarization experiments.Engineering and Applied SciencesPhysic
Recommended from our members
Final Report for the Study on S-Implanted Alloy 22 in 1 M NaCl Solutions
The objective of this study was to examine the effects of high levels of S in the near-surface region on the passivity of Alloy 22, a corrosion resistant Ni-Cr-Mo alloy, in deaerated 1 M NaCl solution. Near-surface concentrations of S up to 2 at.% were achieved in Alloy 22 test specimens by implanting them with S. The S-implanted samples were then evaluated in short-term electrochemical tests in the salt solution and subsequently analyzed with X-ray Photoelectron Spectroscopy (XPS) for film thickness and composition. Specimens tested included non-implanted and annealed Alloy 22 samples, samples implanted with S, and “blanks” implanted with Ar as an ion that would simulate the “damage” of S implantation without the chemical effect. A sample of S-implanted Alloy 22 was also exposed to solution for 29 days and analyzed for evidence of S accumulation at the surface over longer times
Transition Metal Dopants Essential for Producing Ferromagnetism in Metal Oxide Nanoparticles
Recent claims that ferromagnetism can be produced in nanoparticles of metal oxides without the presence of transition metal dopants have been challenged in this work by investigating 62 high quality well-characterized nanoparticle samples of both undoped and Fe doped (0-10% Fe) ZnO. The undoped ZnO nanoparticles showed zero or negligible magnetization, without any dependence on the nanoparticle size. However, chemically synthesized Zn1-xFexO nanoparticles showed clear ferromagnetism, varying systematically with Fe concentration. Furthermore, the magnetic properties of Zn1-xFexO nanoparticles showed strong dependence on the reaction media used to prepare the samples. The zeta potentials of the Zn1-xFexO nanoparticles prepared using different reaction media were significantly different, indicating strong differences in the surface structure. Electron paramagnetic resonance studies indicate that the difference in the ferromagnetic properties of Zn1-xFexO nanoparticles with different surface structures originates from differences in the fraction of the doped Fe ions that participate in ferromagnetic resonance
Recommended from our members
Cr(VI) Effect on Tc-99 Removal from Hanford Low-Activity Waste Simulant by Ferrous Hydroxide.
Here, Cr(VI) effects on Tc-immobilization by Fe(OH)2(s) are investigated while assessing Fe(OH)2(s) as a potential treatment method for Hanford low-activity waste destined for vitrification. Batch studies using simulated low-activity waste indicate that Tc(VII) and Cr(VI) removal is contingent on reduction to Tc(IV) and Cr(III). Furthermore, complete removal of both Cr and Tc depends on the amount of Fe(OH)2(s) present, where complete Cr and Tc removal requires more Fe(OH)2(s) (∼200 g/L of simulant), than removing Cr alone (∼50 g/L of simulant). XRD analysis suggests that Fe(OH)2(s) reaction and transformation in the simulant produces mostly goethite (α-FeOOH), where Fe(OH)2(s) transformation to goethite rather than magnetite is likely due to the simulant chemistry, which includes high levels of nitrite and other constituents. Once reduced, a fraction of Cr(III) and Tc(IV) substitute for octahedral Fe(III) within the goethite crystal lattice as supported by XPS, XANES, and/or EXAFS results. The remaining Cr(III) forms oxide and/or hydroxide phases, whereas Tc(IV) not fully incorporated into goethite persists as either adsorbed or partially incorporated Tc(IV)-oxide species. As such, to fully incorporate Tc(IV) into the goethite crystal structure, additional Fe(OH)2(s) (>200 g/L of simulant) may be required
Reduction and Simultaneous Removal of 99Tc and Cr by Fe(OH)2(s) Mineral Transformation.
Technetium (Tc) remains a priority remediation concern due to persistent challenges, including mobilization due to rapid reoxidation of immobilized Tc, and competing comingled contaminants, e.g., Cr(VI), that inhibit Tc(VII) reduction and incorporation into stable mineral phases. Here Fe(OH)2(s) is investigated as a comprehensive solution for overcoming these challenges, by serving as both the reductant, (Fe(II)), and the immobilization agent to form Tc-incorporated magnetite (Fe3O4). Trace metal analysis suggests removal of Tc(VII) and Cr(VI) from solution occurs simultaneously; however, complete removal and reduction of Cr(VI) is achieved earlier than the removal/reduction of comingled Tc(VII). Bulk oxidation state analysis of the final magnetite solid phase by XANES shows that the majority of Tc is Tc(IV), which is corroborated by XPS measurements. Furthermore, EXAFS results show successful, albeit partial, Tc(IV) incorporation into magnetite octahedral sites. Cr XPS analysis indicates reduction to Cr(III) and the formation of a Cr-incorporated spinel, Cr2O3, and Cr(OH)3 phases. Spinel (modeled as Fe3O4), goethite (α-FeOOH), and feroxyhyte (δ-FeOOH) are detected in all reacted final solid phase samples analyzed by XRD. Incorporation of Tc(IV) has little effect on the spinel lattice structure. Reaction of Fe(OH)2(s) in the presence of Cr(III) results in the formation of a spinel phase that is a solid solution between magnetite (Fe3O4) and chromite (FeCr2O4)
Spectroscopic Characterization of Aqua [ fac-Tc(CO)3]+ Complexes at High Ionic Strength.
Understanding fundamental Tc chemistry is important to both the remediation of nuclear waste and the reprocessing of nuclear fuel; however, current knowledge of the electronic structure and spectral signatures of low-valent Tc compounds significantly lags behind the remainder of the d-block elements. In particular, identification and treatment of Tc speciation in legacy nuclear waste is challenging due to the lack of reference data especially for Tc compounds in the less common oxidation states (I-VI). In an effort to establish a spectroscopic library corresponding to the relevant conditions of extremely high ionic strength typical for the legacy nuclear waste, compounds with the general formula of [ fac-Tc(CO)3(OH2)3- n(OH) n]1- n (where n = 0-3) were examined by a range of spectroscopic techniques including 99Tc/13C NMR, IR, XPS, and XAS. In the series of monomeric aqua species, stepwise hydrolysis results in the increase of the Tc metal center electron density and corresponding progressive decrease of the Tc-C bond distances, Tc electron binding energies, and carbonyl stretching frequencies in the order [ fac-Tc(CO)3(OH2)3]+ > [ fac-Tc(CO)3(OH2)2(OH)] > [ fac-Tc(CO)3(OH2)(OH)2]-. These results correlate with established trends of the 99Tc upfield chemical shift and carbonyl 13C downfield chemical shift. The lone exception is [ fac-Tc(CO)3(OH)]4 which exhibits a comparatively low electron density at the metal center attributed to the μ3-bridging nature of the -OH ligands causing less σ-donation and no π-donation. This work also reports the first observations of these compounds by XPS and [ fac-Tc(CO)3Cl3]2- by XAS. The unique and distinguishable spectral features of the aqua [ fac-Tc(CO)3]+ complexes lay the foundation for their identification in the complex aqueous matrixes
Recommended from our members
Continuous precipitation of ceria nanoparticles from a continuous flow micromixer
Cerium oxide nanoparticles were continuously
precipitated from a solution of cerium(III) nitrate and ammonium
hydroxide using a static microchannel T-mixer. Tmixer
synthesis results were compared with synthesis results
from batch precipitation. Findings show that the method of
mixing is important in the ceria precipitation process. Uniform
porous film structures and nanorods were produced
when the particle chemistry was synthesized using T-mixing
followed by spin coating. Batch mixing, when using higher
NH₄OH feed concentrations followed by spin coating, was
characterized by the heavy agglomeration of nanoparticles.
Similar, high aspect ratio nanorods were produced when
feed conditions in both batch mixing and T-mixing were
identical demonstrating that the momentum effects of continuous
microchannel T-mixing did not impact the synthesis
process. In addition, it was found that the micromixing
approach reduced the exposure of the Ce(OH)₃ precipitates
to oxygen, yielding hydroxide precipitates in place of CeO₂
precipitates. The key advantage of the micro-scale T-mixing
approach is higher throughput which is important for the
scaling of ceria nanoparticle production.Keywords: Ceria, Nanoparticles, Continuous flow synthesis, Microreactor, MicromixerKeywords: Ceria, Nanoparticles, Continuous flow synthesis, Microreactor, Micromixe
Probing Cation Antisite Disorder in Gd2Ti2O7 Pyrochlore by Site-specific NEXAFS and XPS
Disorder in Gd2Ti2O7 is investigated by near-edge x-ray-absorption fine structure (NEXAFS) and x-ray photoelectron spectroscopy (XPS). NEXAFS shows Ti4+ ions occupy octahedral sites with a tetragonal distortion induced by vacant oxygen sites. O 1s XPS spectra obtained with a charge neutralization system from Gd2Ti2O7(100) and the Gd2Ti2O7 pyrochlore used by Chen et al. [Phys. Rev. Lett. 88, 105901 (2002)], both yielded a single peak, unlike the previous result on the latter that found two peaks. The current results give no evidence for an anisotropic distribution of Ti and O. The extra features reported in the aforementioned communication resulted from charging effects and incomplete surface cleaning. Thus, a result confirming the direct observation of simultaneous cation-anion antisite disordering and lending credence to the split vacancy model has been clarified
- …