240 research outputs found

    Lensing reconstruction from line intensity maps: the impact of gravitational nonlinearity

    Get PDF
    We investigate the detection prospects for gravitational lensing of three-dimensional maps from upcoming line intensity surveys, focusing in particular on the impact of gravitational nonlinearities on standard quadratic lensing estimators. Using perturbation theory, we show that these nonlinearities can provide a significant contaminant to lensing reconstruction, even for observations at reionization-era redshifts. However, we show how this contamination can be mitigated with the use of a "bias-hardened" estimator. Along the way, we present an estimator for reconstructing long-wavelength density modes, in the spirit of the "tidal reconstruction" technique that has been proposed elsewhere, and discuss the dominant biases on this estimator. After applying bias-hardening, we find that a detection of the lensing potential power spectrum will still be challenging for the first phase of SKA-Low, CHIME, and HIRAX, with gravitational nonlinearities decreasing the signal to noise by a factor of a few compared to forecasts that ignore these effects. On the other hand, cross-correlations between lensing and galaxy clustering or cosmic shear from a large photometric survey look promising, provided that systematics can be sufficiently controlled. We reach similar conclusions for a single-dish survey inspired by CII measurements planned for CCAT-prime, suggesting that lensing is an interesting science target not just for 21cm surveys, but also for intensity maps of other lines.Comment: 40+18 pages, 13 figures, 5 tables. v2: JCAP published version, with typos fixed and clarifications adde

    Cosmology with the Thermal-Kinetic Sunyaev-Zel'dovich Effect.

    Get PDF
    Compton scattering of the cosmic microwave background (CMB) from hot ionized gas produces a range of effects, and the leading order effects are the kinetic and thermal Sunyaev Zel'dovich (kSZ and tSZ) effects. In the near future, CMB surveys will provide the precision to probe beyond the leading order effects. In this Letter, we study the cosmological information content of the next order term which combines the tSZ and kSZ effects, hereafter called the thermal-kinetic Sunyaev Zel'dovich (tkSZ) effect. As the tkSZ effect has the same velocity dependence as the kSZ effect, it will also have many of the useful properties of the kSZ effect. However, it also has its own, unique spectral dependence, which allows it to be isolated from all other CMB signals. We show that with currently envisioned CMB missions the tkSZ effect can be detected and can be used to reconstruct large scale velocity fields, with no appreciable bias from either the kSZ effect or other extragalactic foregrounds. Furthermore, since the tkSZ effect arises from the well-studied pressure of ionized gas, rather than the gas number density as in the kSZ effect, the degeneracy due to uncertain gas physics will be significantly reduced. Finally, for a very low-noise experiment the tkSZ effect will be measurable at higher precision than the kSZ effect

    Minimizing gravitational lensing contributions to the primordial bispectrum covariance

    Get PDF
    The next generation of ground-based cosmic microwave background (CMB) experiments aim to measure temperature and polarization fluctuations up to ℓmax≈5000 over half of the sky. Combined with Planck data on large scales, this will provide improved constraints on primordial non-Gaussianity. However, the impressive resolution of these experiments will come at a price. Besides signal confusion from galactic foregrounds, extragalactic foregrounds, and late-time gravitational effects, gravitational lensing will introduce large non-Gaussianity that can become the leading contribution to the bispectrum covariance through the connected four-point function. Here, we compute this effect analytically for the first time on the full sky for both temperature and polarization. We compare our analytical results with those obtained directly from map-based simulations of the CMB sky for several levels of instrumental noise. Of the standard shapes considered in the literature, the local shape is most affected, resulting in a 35% increase of the estimator standard deviation for an experiment such as the Simons Observatory (SO) and a 110% increase for a cosmic-variance limited experiment, including both temperature and polarization modes up to ℓmax=3800. Because of the nature of the lensing four-point function, the impact on other shapes is reduced while still non-negligible for the orthogonal shape. Two possible avenues to reduce the non-Gaussian contribution to the covariance are proposed: First by marginalizing over lensing contributions, such as the Integrated Sachs Wolfe (ISW)-lensing three-point function in temperature, and second by delensing the CMB. We show the latter method can remove almost all extra covariance, reducing the effect to below <5% for local bispectra. At the same time, delensing would remove signal biases from secondaries induced by lensing, such as ISW lensing. We aim to apply both techniques directly to the forthcoming SO data when searching for primordial non-Gaussianity

    The Atacama Cosmology Telescope: Lensing of CMB Temperature and Polarization Derived from Cosmic Infrared Background Cross-Correlation

    Get PDF
    We present a measurement of the gravitational lensing of the Cosmic Microwave Background (CMB) temperature and polarization fields obtained by cross-correlating the reconstructed convergence signal from the first season of Atacama Cosmology Telescope Polarimeter data at 146 GHz with Cosmic Infrared Background (CIB) fluctuations measured using the Planck satellite. Using an effective overlap area of 92.7 square degrees, we detect gravitational lensing of the CMB polarization by large-scale structure at a statistical significance of 4.5 sigma. Combining both CMB temperature and polarization data gives a lensing detection at 9.1 sigma significance. A B-mode polarization lensing signal is present with a significance of 3.2 sigma. We also present the first measurement of CMB lensing-CIB correlation at small scales corresponding to l \u3e 2000. Null tests and systematic checks show that our results are not significantly biased by astrophysical or instrumental systematic effects, including Galactic dust. Fitting our measurements to the best-fit lensing-CIB cross-power spectrum measured in Planck data, scaled by an amplitude A, gives A = 1.02(-0.08)(+0.12)(stat.) +/- 0.06(syst.), consistent with the Planck results
    • …
    corecore