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Abstract. We investigate the detection prospects for gravitational lensing of three-
dimensional maps from upcoming line intensity surveys, focusing in particular on the impact
of gravitational nonlinearities on standard quadratic lensing estimators. Using perturbation
theory, we show that these nonlinearities can provide a significant contaminant to lensing
reconstruction, even for observations at reionization-era redshifts. However, we show how
this contamination can be mitigated with the use of a “bias-hardened” estimator. Along
the way, we present an estimator for reconstructing long-wavelength density modes, in the
spirit of the “tidal reconstruction” technique that has been proposed elsewhere, and discuss
the dominant biases on this estimator. After applying bias-hardening, we find that a de-
tection of the lensing potential power spectrum will still be challenging for the first phase
of SKA-Low, CHIME, and HIRAX, with gravitational nonlinearities decreasing the signal
to noise by a factor of a few compared to forecasts that ignore these effects. On the other
hand, cross-correlations between lensing and galaxy clustering or cosmic shear from a large
photometric survey look promising, provided that systematics can be sufficiently controlled.
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We reach similar conclusions for a single-dish survey inspired by CII measurements planned
for CCAT-prime, suggesting that lensing is an interesting science target not just for 21cm
surveys, but also for intensity maps of other lines.

Keywords: gravitational lensing, weak gravitational lensing, cosmological perturbation
theory
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1 Introduction

Gravitational lensing is the process by which photons are deflected by gradients of gravi-
tational potentials as they traverse the universe. If one can measure the impact of these
deflections on observed images of the sky, it is possible to reconstruct a map of the potentials
that caused the deflections. The prospect of such a map is incredibly useful for cosmology,
as the underlying large-scale structure carries the imprints of everything from the Universe’s
initial conditions to the precise behavior of the dark energy which is accelerating the cos-
mic expansion at recent times. Sufficiently deep potential wells can have drastic effects on
observed images at small scales, and while such “strong lensing” events can sometimes be
used for cosmology, we will focus on the opposite “weak lensing” regime, where the strongest
detections are typically accomplished through the analysis of the statistical imprint of much
weaker lensing effects.

Such analyses have been successfully carried out in a variety of contexts. Lensing of
cosmic microwave background (CMB) fluctuations was first detected about a decade ago in
cross-correlation with the clustering of luminous objects [1, 2]. The current state of the art is a
∼40σ detection of the projected auto spectrum of the relevant gravitational potentials by the
Planck collaboration [3], and future measurements are predicted to reach ∼500σ [4], enabling
tight constraints on cosmological physics, particularly with respect to neutrino masses when
combined with other probes [5]. However, CMB lensing is limited in that we can only use
a single two-dimensional “screen” to measure the deflections, implying a limited number of
available Fourier modes to use in the reconstruction process, and only grants access to a
single 2d projection of the full 3d distribution of gravitational potentials.

Lensing can also be measured from correlations between the measured shapes of galax-
ies. The Dark Energy Survey has performed these measurements with a total detection
significance of ∼26σ in their Year 1 dataset [6], and more precise measurements are to come,
both from that collaboration and future large galaxy surveys. This procedure also faces
certain limitations. Large number densities of resolved galaxies are needed for a significant
measurement of shape correlations, and this necessitates the use of photometric redshifts,
which have sizable uncertainties that must be carefully accounted for, and which require
complicated algorithms to reduce. Furthermore, accurate shape measurements are contin-
gent on having strict control over systematics such as the telescope’s point-spread function
or biases in the method used to process raw images into catalogues of ellipticities. Finally,
so-called “intrinsic alignments” of galaxies with their surrounding environments can mimic
the lensing signal and must be carefully modeled. (See ref. [7] for a recent review of all of
these issues.)

In the presence of these difficulties, and given the promise of lensing to improve our
knowledge about cosmology, one is led to ask whether we can measure lensing by other means.
Since any measurements of a source field at cosmological distances will be subject to the
effects of lensing, in principle, any source field with known statistics can be used to reconstruct
the intervening gravitational potentials. For example, lensing of the Lyman-α forest [8, 9] and
the cosmic infrared background [10] have recently been investigated. A particularly exciting
example is neutral hydrogen, which is ubiquitously distributed throughout the Universe at
all times after recombination, and can absorb or emit photons with a wavelength of 21cm
as it undergoes a spin-flip transition of the proton-electron pair. Upon detection of these
photons, the redshifts of the sources can then be precisely determined by a measurement of
the photons’ wavelengths. Consequently, the redshifted 21cm field traces the 3-dimensional
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distribution of neutral hydrogen. Measurements of this field have been identified as being
able to supply information about the first collapsed objects and how they eventually reionized
the Universe [11, 12], and at lower redshifts, being able to constrain the Universe’s recent
expansion history via the baryon acoustic oscillation scale (e.g. [13]).

Several works related to lensing of 21cm fluctuations exist in the literature. Early
works suggested making use of pre-reionization 21cm absorption measurements using CMB
lensing techniques [14], or using either a position-space variance map or shape measurements
of individually-resolved minihalos [15]. Magnification of number-counts of 21cm-emitting
galaxies (pursuant to the availability of sufficient angular resolution) was also identified as a
possible option [16, 17]. It was suggested in ref. [18] that 21cm lensing measurements might
be useful in de-lensing CMB B-modes that act as a contaminant to estimates of primordial
tensor modes, but this was found to be a very futuristic prospect.

In ref. [19], the 2d Fourier-space quadratic estimator used in CMB lensing [20, 21] was
extended to observations in 3d, with an eye to future applications to reionization-era 21cm
measurements. Other estimators have also been discussed, including configuration-space
correlation-function-based estimators [22, 23] similar to those for the CMB [24, 25], mixed
configuration-Fourier space estimators [22], and estimators for the lensing convergence and
shear instead of the deflection angle [26, 27]. Fourier-space estimators have been further
investigated, in the presence of a Poisson component of the source field power spectrum [28,
29] and in simulations [30]. An alternative method for calculating the effect of lensing on
21cm observations, involving a Wilsonian cutoff-based approach that leads to a system of
differential equations, was investigated in ref. [31]. In addition to the applications mentioned
above, it has been proposed that 21cm lensing could be used to detect massive halos [22, 32],
measure galaxy cluster masses [33], or test the origin of the CMB cold spot [34]. Finally,
detection of curl lensing modes induced by inflationary gravitational waves could help to
verify the primordial origin of large-scale B-modes in the CMB [35], or even constrain the
tensor-to-scalar ratio to high precision [36].

In addition to 21cm, there are other emission lines that one could use to map out the
Universe in certain regimes. Many of these lines are too faint to detect from all but the
brightest emitting objects, but this hurdle can be overcome by aggregating all emission at
a given wavelength into broad, arcminute-scale pixels, a technique known as “line intensity
mapping.” A community effort is beginning to mobilize around this idea, exploring its ap-
plications to open questions in star formation, galaxy evolution, and cosmology; for a recent
summary, see ref. [37]. Lensing reconstruction using these maps has not been well-explored
outside of the 21cm case, aside from ref. [14], who mentioned the infrared background from
the first stars as a possible source field. As with 21cm, the benefit of mapping an emission
line is that redshift information can be used to construct a 3d map. Such a map will have
limited angular resolution compared to galaxy surveys, but this is precisely the regime of
CMB measurements, for which there exist well-developed and actively-used tools for lens-
ing reconstruction.

In contrast to the CMB, however, the lower-redshift structure traced by line intensity
maps will be subject to significant gravitational evolution, which induces nonlinearities into
an otherwise linear field with Gaussian statistics. Even at high redshifts, at which the source
field will be more linear at a given comoving scale than at lower redshifts, nonlinearities
will become important at sufficiently small scales, which often overlap with the expected
angular resolutions of intensity mapping surveys at those redshifts. As we will demonstrate
in this paper, these nonlinearities can act as an extra source of noise on lensing power
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spectra, and can also generate additive biases both at map level and power-spectrum level.
These effects are sometimes remarked upon, but their quantitative impact on forecasts or
formalisms has often been omitted in previous work. Notable exceptions are refs. [26, 27], in
which gravitational nonlinearities were incorporated into a lensing estimator by calibrating
against N -body simulations, and ref. [10], which has investigated related effects in lensing of
the cosmic infrared background.

Our overall goal is to quantify the impact of these nonlinearities on the Fourier-space
quadratic estimator from ref. [19], first in a general setting and then for specific intensity
mapping surveys that are ongoing or planned. We will do so using large-scale structure
perturbation theory up to a certain order; this approach is only valid within a certain regime
(which we quantify, and which overlaps well with the regime accessible to most observations
we consider), but has the advantage of being describable analytically, enabling more control
over predictions than in a simulation- or fitting-function-based approach.

Our paper is organized as follows:

• Section 2: we first review the derivation of the quadratic lensing estimator from ref. [19].
We then set up and sketch our perturbation theory calculation of the leading effects
of gravitational non-linearities on this estimator, presenting the final expressions but
relegating the details to appendices A–D. We visualize the size of these effects as a
function of redshift and angular resolution, and show that they significantly increase
the lensing reconstruction noise (i.e. the noise per mode) over the standard assumptions
of linearity and Gaussianity.

• Section 3: we show how the technique of “bias-hardening” [38] can be used to modify
the lensing estimator to subtract off a sizable portion of the gravitational bias, and
quantify the advantages and disadvantages of this technique in different circumstances.
We also comment on the application of quadratic estimators in this paper to “tidal
reconstruction” [39–41], which can reconstruct long-wavelength modes of the matter
density at the source redshift.

• Section 4: we perform forecasts for the detectability of lensing, either in the auto
spectrum or in cross-correlation with galaxy clustering or cosmic shear from an LSST-
like survey, for phase 1 of SKA-Low, CHIME, HIRAX, and a single-dish CII intensity
mapping survey. The results of these forecasts are summarized in table 1 and figure 12.
Overall, we find that a detection of the lensing auto spectrum in these surveys will be
challenging, but cross-correlations with a large photometric survey may be detectable
(pursuant to systematics being controlled at the appropriate level).

• Section 5: using HIRAX as our base configuration, we examine which improvements in
experimental or survey design would yield the greatest benefits to a lensing analysis.
Various configurations are summarized in table 2; in brief, we find that increasing the
number of dishes in an interferometer would confer the largest improvement from a
lensing point of view, as this would add longer baselines (increasing the angular reso-
lution on the sky) while decreasing the thermal noise contribution across all observed
scales.

• Section 6: we conclude by discussing related topics that would be worth pursuing in
future work.
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In this work, we will use same the background cosmology as the Planck 2015 lensing
analysis [3]: a spatially-flat Lambda cold dark matter model with physical baryon density
Ωbh

2 = 0.0222, physical matter density Ωmh
2 = 0.1245, physical neutrino density Ωνh

2 =
0.00064, dimensionless Hubble parameter h = 0.6712, amplitude and slope of primordial
perturbations of As = 2.09× 10−9 and ns = 0.96, both evaluated at a pivot scale of kpivot =
0.05Mpc−1. We will use the following conventions for integrals in 2d and 3d Fourier space:∫

`
≡
∫

d2`

(2π)2
,

∫
k
≡
∫

d3k

(2π)3
. (1.1)

We will use δD and δK to denote Dirac delta functions and Kronecker deltas, respectively.
These are not to be confused with the nonlinear matter overdensity δ ≡ (ρ − ρ̄)/ρ̄, or δn,
the contribution to the overdensity at nth order in perturbation theory (introduced in sec-
tion 2.3.1).

2 Lensing estimator

2.1 Observations in 3d

Consider observations of an intensity field in 3d at time τ , I3d(x; τ). Following ref. [19], we
use the two-dimensional angular wavevector ` as the transverse Fourier coordinate instead
of k⊥, the comoving spatial wavevector perpendicular to the line of sight. We define

I(`, k‖; τ) ≡
∫
dx‖

L
e−ik‖x‖

∫
d2θ e−i`·θI3d(χθ, x‖; τ) =

1

Lχ2
I3d(`/χ, k‖; τ) , (2.1)

working in the flat sky approximation. We have defined L as the comoving line-of-sight
thickness within which we observe the intensity, and draw attention to the notational dis-
tinction between I3d and I (the latter of which matches the definition of Î from ref. [19]).
Note that we have assumed that we can neglect time-evolution of I3d within the line-of-sight
range of our observations, such that we do not need to Fourier transform along the light-cone
in the line-of-sight direction; thus, we take τ to denote the time corresponding to the mean
of the observed redshift interval, and take the comoving distance χ to be evaluated at τ .1

Henceforth, we will drop the τ argument from all quantities.
We define the angular power spectrum of I(`, k‖) by

C`(k‖) ≡ L−1χ−2PI

(√
`2

χ2
+ k2
‖

)
, (2.2)

where PI is the 3d power spectrum of I3d, so that〈
I(`, k‖)I(`′,−k‖)

〉
= (2π)2δD(`+ `′)C`(k‖) . (2.3)

We similarly define Ctot
` (k‖) as the angular power spectrum of I, including the experimental

noise contribution CN
` (k‖):

Ctot
` (k‖) = C`(k‖) + CN

` (k‖) . (2.4)

1Note that this “observed redshift interval” need not span an entire survey. In a typical case, the full
observed range would be broken up into smaller redshift bins, with quantities evaluated at the mean redshift
of each bin. We adopt this approach in the forecasts in section 4.
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As indicated earlier, we will consider observations within a finite comoving thickness L,
implying that the available k‖ modes will be discrete. We index these modes by j, defining
k‖α = 2πjα/L. For ease of notation, we will sometimes use continuous notation for k‖, with

appropriate substitutions understood, e.g. (2π)δD(k‖1 − k‖2)→ LδK
j1j2

.

2.2 Review of quadratic estimator in 3d

The effect of gravitational lensing is typically described by the lensing potential φ(θ; τ),
given by

φ(θ;χs) =
2

c2

∫ χs

0
dχ
χs − χ
χsχ

Φ(χθ, χ; τ [χ]) , (2.5)

in a flat universe, where χs is the comoving distance to the sources that are being lensed and
Φ is the gravitational potential, related to the matter overdensity δ by

∇2Φ(x, τ) =
3

2
Ωm(τ)a(τ)2H(τ)2δ(x, τ) . (2.6)

In the Limber approximation [42, 43], the angular power spectrum of φ can be written as

CφφL ≈
9

c4

∫ χs

0
dχ
χ2

L4

(
χs − χ
χs χ

)2

Ωm(τ [χ])2a(τ)4H(τ [χ])4Pδδ(L/χ; τ [χ]) . (2.7)

In this paper, we will take χs to be the distance to the mean redshift of the observed volume,
and assume that the source field within that volume is all lensed by the same φ. In our
forecasts for specific surveys below, we ensure to set L such that CφφL varies by less than
∼ 10% over the thickness of each slab.

Observations of an intensity field will be affected by gravitational lensing via a re-
mapping of the observed angular coordinates by a deflection field d(θ):

Ilen(x⊥, x‖) = I3d(x⊥ + χd(θ), x‖) . (2.8)

In the limit of weak deflections, we can write di(θ) = (∂/∂θi)φ(θ), and Taylor-expand eq. (2.8)
around φ = 0:

Ilen(x⊥, x‖) = I3d(x⊥, x‖) + χ
∂

∂θa
φ(θ) · ∂

∂xa⊥
I3d(x⊥, x‖) +O(φ2) . (2.9)

In (`, k‖)-space, this becomes

Ilen(`, k‖) = L−1χ−2I3d(`/χ, k‖)−L−1χ−2

∫
`′
`′ ·(`−`′)φ(`−`′)I3d(`′/χ, k‖)+O(φ2) . (2.10)

If we consider an ensemble average over realizations of I with φ held fixed, we obtain〈
Ilen(`1, k‖1)Ilen(`2, k‖2)

〉
φfixed

= (2π)3δD(`1 + `2)δD(k‖1 + k‖2)L−1C`1(k‖1)

+ (2π)δD(k‖1 + k‖2)L−1 (`1 + `2) ·
[
`1C`1(k‖1) + `2C`2(k‖2)

]
φ(`1 + `2)

+O(φ2) ; (2.11)

thus, lensing induces off-diagonal angular correlations in the observed intensity, and this fact
can be used to construct an estimator for the associated mode of the lensing potential.

– 5 –
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In detail, we can write a quadratic estimator for φ in the form

φ̂(L; k‖) ≡
∫
`
gφ(`,L− `, k‖)Iobs(`, k‖)Iobs(L− `,−k‖) , (2.12)

where Iobs is equal to Ilen plus instrumental noise. (Note that the k‖ argument of the estimator
indicates that modes of I with parallel wavenumber k‖ are being used to estimate φ(L), not

that the desired mode of φ has parallel wavenumber k‖.) Since φ̂(L;−k‖) = φ̂(L; k‖) we will
restrict to positive values of k‖ when we sum over radial modes below.

We can derive the choice of gφ that minimizes the variance of φ̂ subject to the condition

that the estimator is unbiased, 〈φ̂(L; k‖)〉 = φ(L), with the variance calculated assuming
that the source intensity field is Gaussian. This yields

gφ(`,L− `, k‖) ≡ N
(G)
φφ (L, k‖)

fφ(`,L− `, k‖)
Ctot
` (k‖)C

tot
|L−`|(k‖)

, (2.13)

where

fφ(`1, `2, k‖) ≡ (`1 + `2) ·
[
`1C`1(k‖) + `2C`2(k‖)

]
, (2.14)

and

N
(G)
φφ (L, k‖) ≡

[∫
`

fφ(`,L− `, k‖)2

Ctot
` (k‖)C

tot
|L−`|(k‖)

]−1

. (2.15)

With these choices, the variance of φ̂(L; k‖) is equal to N
(G)
φφ (L, k‖). Note that for k‖ = 0,

including for the case of a single source screen such as the CMB, there is an extra factor of
2 in the denominator of eq. (2.13) and the denominator of the integrand of (2.15).

In the L � ` limit and for a Gaussian source field, eq. (2.12) optimally combines the
information from the lensing convergence and shear. It is also possible to construct separate
estimators for convergence and shear (e.g. [26, 27, 44]), which can confer certain advantages
in the presence of strong intrinsic non-Gaussianities. As we describe later, in this work we
explicitly restrict ourselves to the regime of weak non-Gaussianity of the source field, where
we expect the variance of the estimator in eq. (2.12) to remain close to optimal.

In the Gaussian approximation for I, the noise associated with the estimator in eq. (2.12)
for a given mode φ(L) is uncorrelated for different values of k‖. Therefore, estimates from
different k‖ values can be combined with inverse-variance weighting to yield an optimal
estimate of φ(L), with variance

N
(G,combined)
φφ (L) =

 ∑
j≥jmin

N
(G)
φφ (L, 2πj/L)−1

−1

. (2.16)

Note that similar expressions in the literature (e.g. [19, 30]) often have an extra factor of 2
in the denominator of the integrand of eq. (2.15). In these works, the sum in eq. (2.16) runs
over positive and negative values of j. Since φ̂(L;−k‖) = φ̂(L; k‖), this sum is equivalent to
twice the sum over only positive j values, and is therefore equivalent to the expressions we
present here, which are for j > 0.

– 6 –
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2.3 Gravitational contributions

The estimator in section 2.2 assumed that lensing is the only source of off-diagonal mode-
couplings in the source intensity field. For the CMB, this is an excellent approximation, since
other sources of off-diagonal correlations or non-Gaussianity are subdominant and there exist
well-developed techniques to model and remove these contaminants (e.g. [45, 46]). On the
other hand, a line intensity map will trace the underlying matter perturbations to a large
extent, and these perturbations will be non-Gaussian due to gravitational evolution, with
a magnitude that increases with time and wavenumber. Even at redshifts that might be
considered “high,” if sufficiently small angular scales are used for lensing reconstruction, there
is a danger that these scales could have a sizeable level of gravitational non-Gaussianity. If
this non-Gaussianity is not properly accounted for, the induced mode-coupling in the source
field will bias the estimate of the lensing field constructed from intensity maps. In this
section, we set up a framework in which one can quantify these effects as a function of the
properties of a given observation.

2.3.1 Setup of perturbative calculation

In the regime where nonlinearities from gravity are non-negligible but weak, they can be
described using perturbation theory (e.g. [47]). In this approach, the effective fluid equations
that describe the matter density and velocity at large scales are solved perturbatively around
the solution to the linearized equations. If we denote2 the linear overdensity by δ1(k; τ),
the corrections arising from nonlinear terms in the fluid equations can be written as an

expansion in δ1, involving kernels F
(s)
n that describe nonlinearities via couplings between

different linear modes:

δ(k; τ) =
∞∑
n=1

δn(k; τ) (2.17)

=

∞∑
n=1

∫
q1

· · ·
∫
qn

(2π)3δD(k − q1 − · · · − qn)F (s)
n (q1, · · · , qn)δ1(q1; τ) · · · δ1(qn; τ) .

The form of the F
(s)
n kernels is given by a recurrence relation that can be derived from the

fluid equations (e.g. [47]); in this work, we will only need F
(s)
2 and F

(s)
3 , which are given in

appendix A. When correlation functions of δ are calculated using the expansion above, they
will involve a series of terms composed of convolution integrals over factors of the kernels and
the linear power spectrum. These terms can be described using the language of Feynman
diagrams, with those containing no unevaluated integrals referred to as being “tree-level,”
while those with n integrals are called “loop corrections,” because the corresponding diagram
contains n closed loops around which the “momenta” (wavenumbers) are unconstrained.

In the modern view, this perturbation theory should be understood as an effective field
theory, valid only for wavenumbers smaller than some nonlinear scale kNL where fluctuations
become too large to admit a perturbative treatment [48, 49]. The expansion in eq. (2.17) must
be supplemented by a parallel expansion in “counterterms” with a similar form, which cure
the sensitivity of loop integrals to high wavenumbers where the effective fluid description
is no longer valid, and also parametrize further physical effects of couplings between long

2We will always take δ to be the standard definition of the matter overdensity, evaluated on 3d coordinates
in either configuration or Fourier space, and therefore do not use the “3d” subscript used on I in sections 2.1
and 2.2.
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Figure 1. Estimate for the range of validity of our tree-level perturbation theory calculation of
the matter trispectrum, as a function of redshift. Deviations from the tree-level approximations for
all matter n-point functions are expected to be of the same order, so as a proxy for the maximum
wavenumber (left panel) or angular multipole (right panel) where the tree-level trispectrum is valid,
we compute where the nonlinear power spectrum as given by Halofit [59] deviates from the linear
spectrum by 30%. In the right panel, we use `2max = χ(z)2(k2

max − k2
‖), and plot different curves

corresponding to the k‖ values given in the legend.

and short modes. These terms arise from an effective stress tensor in the Euler equation,
itself written as an expansion in long-wavelength degrees of freedom and spatial derivatives,
consistent with the symmetries expected to be obeyed at large distances. A growing body of
work (e.g. [50–58]) has shown that the addition of these terms can improve the behavior of the
perturbative expansion, both from the perspective of theoretical consistency and matching
nonlinear measurements from N -body simulations.

In this work, we wish to quantify the contribution of gravitational nonlinearities to the
variance of the quadratic lensing estimator, which ultimately arises from the trispectrum
of the source intensity field. We restrict ourselves to the tree-level computation, which is
O(δ6

1) in the trispectrum, requiring up to third order in the expansion in eq. (2.17). This
has the advantage of computational simplicity, since there are no loop integrals to perform.
Furthermore, it is not necessary to include any of the counterterms mentioned above, since
they are only needed in loop-level calculations.

We can estimate where the tree-level computation is valid by examining where the
nonlinear trispectrum begins to deviate from it by a significant margin. As a proxy for
this, we can examine where the nonlinear matter power spectrum begins to deviate from
the linear spectrum, since these deviations are expected to be of the same order for different
n-point functions. We therefore compute, as a function of redshift, the wavenumber at which
the Halofit [59] nonlinear power spectrum fitting function for our chosen cosmology differs
from the linear spectrum by 30%; this is shown in the left panel of figure 1.3 In the right
panel, we translate this wavenumber into an ` value using `2max ∼ χ(z)2(k2

max − k2
‖). We

find that for k‖ = 0, we are limited to ` . 2000 (θ & 5′) at z ∼ 2, while for z & 4 our
computation will be valid at least for ` . 5000 (θ & 2′), with these numbers decreasing

3Another way to estimate the validity of the tree-level computation would be to compare the one-loop
power spectrum to the linear spectrum. We have checked that this gives comparable results to what we
find from Halofit. Also, the threshold of 30% is roughly where biases from neglected higher-order terms are
expected to become significant, but is not a unique choice. In an application to real data, one would need
to investigate the biases arising from higher-order terms in more detail. For example, this could naturally be
accomplished with simulations of the lensed intensity field.
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with increasing k‖. These limits are generally within the ranges expected of current and
future line intensity mapping experiments, except at very low redshifts. For observations
with angular resolutions approaching these scales, extension of our results to one-loop order
(or examination of appropriate simulations) would be necessary to precisely quantify where
the tree-level picture begins to fail.

To proceed, we will assume a linear relationship between the intensity I3d and the matter
overdensity δ (recall that temporal arguments are present for I3d and δ, but we are omitting
them from our notation):

I3d(x) = b(z)δ(x) . (2.18)

There are several real-world effects that could alter this relationship, such as nonlinear bias,
shot noise in the discrete sources that are emitting the intensity (investigated in the context
of lensing reconstruction in refs. [28, 29]), redshift space distortions beyond linear order,
or the influence of fluctuations in other quantities (such as the ionization fraction during
reionization, in the case of 21cm measurements at the appropriate redshifts). Since we are
focused on the impact of purely gravitational nonlinearities in this work, we will neglect these
effects, each of which must however be investigated in detail before the estimators can be
applied to data.

2.3.2 Gravitational mode-couplings

We can now begin to extend the calculations in section 2.2 to include mildly nonlinear
gravitational effects. We expand the observed intensity in powers of both φ and δ1, bringing
some prefactors to the left-hand side for brevity and omitting the redshift-dependence of b:

b−1Lχ2Ilen(`, k‖) = δ1(`/χ, k‖)

−
∫
`′
`′ · (`− `′)φ(`− `′)δ1(`′/χ, k‖)

+

∫
q
F

(s)
2 (q,k − q)δ1(q)δ1(k − q)

∣∣∣∣
k=(`/χ,k‖)

+

∫
q

∫
p
F

(s)
3 (q,p,k − q − p)δ1(q)δ1(p)δ1(k − q − p)

∣∣∣∣
k=(`/χ,k‖)

−
∫
`′
`′ · (`− `′)φ(`− `′)

∫
q
F

(s)
2 (q,k′ − q)δ1(q)δ1(k′ − q)

∣∣∣∣
k′=(`′/χ,k‖)

+O(φ2δ1
1) +O(φ1δ3

1) +O(φ0δ4
1) . (2.19)

In addition to expanding up to O(φ) and O(δ3
1), we have written the first mixed term, at

O(φδ1), for illustrative purposes.

In the absence of nonlinearities from gravity (F
(s)
2 = F

(s)
3 = 0), ensemble-averaging

the two-point function of I with φ held fixed would again result in eq. (2.11). Now, let us
consider the opposite situation, in which lensing is absent (φ = 0), and we take an ensemble
average over all modes of δ1 except for those within a narrow wavenumber bin centered on
k = (L/χ, k‖). Assuming ki = (`i/χ, k‖i) for i = 1, 2 are not in this bin, the analogous
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expression to eq. (2.11) is then

(b−1Lχ2)2
〈
Ilen(`1, k‖1)Ilen(`2, k‖2)

〉
φ=0; δ1(L/χ,k‖) fixed

=

∫
q | q 6∈ bin,k2−q 6∈ bin

F
(s)
2 (q,k2 − q) 〈δ1(k1)δ1(q)δ1(k2 − q)〉

∣∣∣∣∣
ki=(`i,k‖i)

+ [1↔ 2]

+ 2

∫
q | q ∈ bin,k2−q 6∈ bin

F
(s)
2 (q,k2 − q)δ1(q) 〈δ1(k1)δ1(k2 − q)〉

∣∣∣∣∣
ki=(`i,k‖i)

+ [1↔ 2]

= 2 δ1

(
`1 + `2

χ
, k‖1 + k‖2

)F (s)
2 (k1 + k2,−k1)Pδ1

√ `21
χ2

+ k2
‖1

+ [1↔ 2]


k⊥i=`i/χ

×Θ

[(
`1 + `2

χ
, k‖1 + k‖2

)
∈ bin

]
, (2.20)

where Pδ1 is the linear matter power spectrum, and we define Θ(·) to equal one if its argument
is true and zero otherwise. The second line above evaluates to zero because δ1 is assumed to
be Gaussian. In brief, in eq. (2.20) we have found that〈
Ilen(`1, k‖1)Ilen(`2, k‖2)

〉
δ1(L/χ,k‖) fixed

∝ δ1

(
L/χ, k‖

)
if `1 +`2 = L, k‖1 +k‖2 = k‖ . (2.21)

This is essentially the same statement as eq. (2.11), which says that〈
Ilen(`1, k‖1)Ilen(`2, k‖2)

〉
φfixed

∝ φ(L) if `1 + `2 = L, k‖1 + k‖2 = 0 . (2.22)

Since φ and I are uncorrelated for any value of L, we do not need to specify which modes of
φ are held fixed in the ensemble average, but for the equivalent statement for δ1, more care is
required, as seen in eq. (2.20). Once this is done, we arrive at the following conclusion: just as
we can use couplings between modes of the source field to estimate the (longer) lensing mode
that is creating the coupling, we can also use mode-mode couplings to estimate the value of
a longer mode of the overdensity that is creating the coupling via gravitational evolution.
We have used a somewhat contrived ensemble averaging operation to derive this fact, but
such an operation is effectively realized in analysis of data or simulations if the scales used
for lensing reconstruction are disjoint from the scales at which the modes of φ or δ1 are
being reconstructed.

We wish to highlight the relationship between non-stationary and non-Gaussian statis-
tics manifested here. In general, the two concepts are separate: stationarity (also referred to
as “statistical homogeneity” in studies of large-scale structure) causes off-diagonal correla-
tions to vanish, while non-Gaussianity is signalled by the presence of connected n-point func-
tions that are not just products of the 2-point function. In an ensemble over density modes
of all wavevectors, gravitational evolution induces non-Gaussianity but not non-stationarity.
However, in an ensemble in which some (typically long-wavelength) density modes are held
fixed and others (typically of shorter wavelength) fluctuate, gravitational evolution induces
non-stationarity of the ensemble’s statistics, as manifested in eq. (2.21). The fixed long modes
create an inhomogeneous background for the short modes, breaking translation-invariance of
the short modes’ statistics. The leading-order cause for this breaking is the presence of tidal
effects, as expected from the equivalence principle.
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In the case where k‖1 + k‖2 = 0, eqs. (2.11) and (2.20) can be summarized by

〈
Ilen(`, k‖)Ilen(L− `,−k‖)

〉
φ, δ1(L/χ,0) fixed

(2.23)

= (2π)2δD(L)C`(k‖) + fφ(`,L− `, k‖,−k‖)φ(L) + fδ(`,L− `, k‖,−k‖)δ1(L/χ, 0) + · · · ,

where

fφ(`1,`2,k‖1,k‖2)≡ (`1+`2)·
[
`1C`1(k‖1)+`2C`2(k‖2)

]
, (2.24)

fδ(`1,`2,k‖1,k‖2)≡ 2L−1χ−2
[
F

(s)
2

(
−(`1/χ,k‖1),([`1+`2]/χ,k‖1+k‖2)

)
C`1(k‖1)+[1↔ 2]

]
.

(2.25)

In eq. (2.23), we have absorbed the bias b2 into the source field angular power spec-
trum C`(k‖).

The F
(s)
3 term from eq. (2.19) will not contribute to eq. (2.23). Following the same

logic as eq. (2.20), we find that if none of the four δ1 factors is evaluated at k ∼ (L/χ, k‖),
then they will Wick-contract in pairs, and the resulting contribution will be an irrelevant
diagonal correlation (proportional to δD(L)). We will assume that the mode of δ held fixed
in the average is much longer than either of the external modes in the two point function;
thus, only at most one of the three δ1 factors under the integral will come out of the average,

and the ensemble average of the remaining three δ1 factors will vanish. Intuitively, the F
(s)
3

term does not induce non-stationarity on the statistics of δ, but it does contribute to the
non-Gaussianity of the δ 4-point function, which will affect the variance of the φ̂ estimator.
We will see precisely how in the next subsection.

Some of the O(δn1 ) terms in eq. (2.19) will cross-correlate with O(φ δn
′

1 ) terms to modify
the coefficient of φ(L) in eq. (2.23). Such modifications will constitute a sequence of nonlinear
corrections to the δ power spectrum. This can be accounted for by using the nonlinear
matter power spectrum rather than the linear power spectrum in fφ. We will make the same
replacement in fδ, which, while not strictly self-consistent within perturbation theory, will
incorporate part of the correlations between O(δn>3

1 ) terms in eq. (2.19).

2.3.3 Quadratic estimators revisited

We can now better characterize the impact of gravitational nonlinearities on the quadratic
lensing estimator discussed above, and also define an analogous estimator for long modes of
the matter overdensity. We write a general quadratic estimator as

X̂(L; k‖) ≡
∫
`
gX(`,L− `, k‖)Iobs(`, k‖)Iobs(L− `,−k‖) (2.26)

where X ∈ {φ, δ}. We have already seen the X = φ case, while the X = δ case is an estimator
for a purely transverse (to the line of sight) mode of the linear overdensity, δ1(L/χ, 0). We
will comment further on the use of this estimator in reconstructing the matter distribution
in section 3.2. Note that, since we have neglected redshift evolution of the source field over
the observed volume, the δ estimator is an estimator for δ1(L/χ, 0) evaluated at the mean
redshift of the observed range.
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The covariance between two such estimators can be split into Gaussian and non-
Gaussian4 parts:〈
X̂(L1,k‖1)Ŷ ∗(L2,k‖2)

〉
−
〈
X̂(L1,k‖1)

〉〈
Ŷ ∗(L2,k‖2)

〉
(2.27)

= (2π)2δD(L1−L2)
(

CovG

[
X̂(L1,k‖1), Ŷ ∗(L1,k‖1)

]
+CovnG

[
X̂(L1,k‖1), Ŷ ∗(L1,k‖2)

])
,

where

CovG

[
X̂(L, k‖1), Ŷ ∗(L, k‖2)

]
= δK

k‖1,k‖2

∫
`
gX(`,L− `, k‖1)gY (`,L− `, k‖1)Ctot

` (k‖)C
tot
|L−`|(k‖)

(2.28)
and

CovnG

[
X̂(L, k‖1), Ŷ ∗(L, k‖2)

]
=

∫
`1

∫
`2

gX(`1,L− `1, k‖1)gY (`2,L− `2, k‖2)

×
〈
Iobs(`1, k‖1)Iobs(L− `1,−k‖1)Iobs(−`2,−k‖2)Iobs(−L+ `2, k‖2)

〉
c
, (2.29)

and we have assumed that the g functions are real and that k‖1, k‖2 > 0. The “c” subscript
in the last line of eq. (2.29) refers to the connected part of the Iobs four-point function. Next,
we define

N
(G)
XY (L, k‖) ≡

[∫
`

fX(`,L− `, k‖,−k‖)fY (`,L− `, k‖,−k‖)
Ctot
` (k‖)C

tot
|L−`|(k‖)

]−1

. (2.30)

We choose the filter gX as in section 2.2: by minimizing the Gaussian contribution to the
variance of X̂, under the condition that X̂ is unbiased in the absence of any other sources of
mode-coupling. These requirements fix gX to be

gX(`,L− `, k‖) ≡ N
(G)
XX(L, k‖)

fX(`,L− `, k‖,−k‖)
Ctot
` (k‖)C

tot
|L−`|(k‖)

, (2.31)

which implies that

CovG

[
X̂(L, k‖), Ŷ

∗(L, k‖)
]

=
N

(G)
XX(L, k‖)N

(G)
Y Y (L, k‖)

N
(G)
XY (L, k‖)

. (2.32)

The estimators above were derived under the assumption that only one of either lensing
or gravitational nonlinearity is present. In the presence of both effects, each estimator will
acquire a bias,5 if we again consider an ensemble average where we hold φ and a single long

4Some of the contributions that we refer to as non-Gaussian also cause the statistics of the source field to be
non-stationary, and have the same form as non-stationarity-inducing terms from lensing. Thus, one could argue
that these specific contributions are not “non-Gaussian,” but rather reflect a coordinate transformation that
does not affect the Gaussianity of the source field’s statistics. With this caveat, we refer to any contribution
to the left-hand side of eq. (2.27) that is not eq. (2.28) as non-Gaussian.

5See ref. [38] for a discussion of similar biases that arise in other contexts.
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mode of δ fixed:

〈
φ̂(L; k‖)

〉
φ, δ(L/χ,0) fixed

= φ(L) +
N

(G)
φφ (L, k‖)

N
(G)
φδ (L, k‖)

δ1(L/χ, 0) , (2.33)

〈
δ̂(L; k‖)

〉
φ, δ(L/χ,0) fixed

= δ1(L/χ, 0) +
N

(G)
δδ (L, k‖)

N
(G)
φδ (L, k‖)

φ(L) . (2.34)

Thus, if we take the covariance of eq. (2.33), averaging over all fluctuations (including φ and
all modes of δ1), we find that the power spectrum of φ̂ will contain the following terms:

〈
φ̂(L, k‖)φ̂

∗(L′, k‖)
〉
⊃ (2π)2δD(L−L′)

CφφL + Lχ2

N (G)
φφ (L, k‖)

N
(G)
φδ (L, k‖)

2

Pδ1(L/χ)

 , (2.35)

where Pδ1 is the linear matter power spectrum. Both of these terms can also be derived
directly from the connected four-point function of Iobs that appears in eq. (2.29). However,
there are further non-Gaussian contributions that we have not encountered yet, but that
should be considered in a complete calculation at the order we are working at.

To enumerate these contributions, let us examine the various contractions that occur
within the two-point function of φ̂. Schematically, we can write

φ̂ ∼ IlenIlen , Ilen ∼ δ1 + δ1φ+ δ1δ1 + δ1δ1δ1 + · · · , (2.36)

with the ellipsis denoting higher-order terms. Thus, 〈φ̂φ̂〉 will contain the following contrac-
tions:

1. 〈δ1δ1 δ1δ1〉: this gives the Gaussian term N
(G)
φφ .

2. 〈δ1δ1φ φ δ1δ1〉: this gives a term ∝ CφφL , which is the signal we aim to extract from the
covariance. The gφ filter in the quadratic estimator is chosen such that the prefactor
of this term is unity. (Here and below, each φ is taken to come from the same factor
of Ilen as the adjacent δ1.)

3. 〈δ1δ1φ φ δ1δ1〉: this gives an additive correction to N
(G)
φφ term, encapsulating the leading

effects of lensing on power spectrum of Ilen. As mentioned at the end of section 2.3.2,

this term (and similar terms appearing at higher order) can be incorporated into N
(G)
φφ

simply by using the lensed, nonlinear intensity power spectrum in the filters in the
estimator.

4. 〈δ1δ1φ φ δ1δ1〉: this gives an integral that convolves CφφL with factors of the source
power spectrum. In CMB lensing, this term is known as a “secondary contraction”
that yields the so-called “N (1) bias” [60]. Current CMB lensing measurements have
reached sufficiently high precision that this term must be modeled [61]. In appendix B,
we show that this term is subdominant to the other terms we consider, and can safely
be neglected for the purposes of this paper.

– 13 –



J
C
A
P
0
7
(
2
0
1
8
)
0
4
6

5. 〈δ1δ1δ1 δ1δ1δ1〉: analogous to the second term in this list, this contraction gives a term
proportional to Pδ1(L/χ), the power spectrum of long modes of the density that are
coupled to shorter modes by gravitational evolution. This term can be disentangled
from the leading effects of lensing by defining “bias-hardened” estimators, which we
discuss in section 3.1. For the same reasons, this term can also be targeted by procedures
aimed at reconstructing the power spectrum of long-wavelength modes, as we will
discuss in section 3.2. In the language of perturbation theory, this term is contained in
the T2211 trispectrum diagram (e.g. [57]).

6. 〈δ1δ1δ1 δ1δ1δ1〉: analogous to the third term in this list, this contraction gives an

additive correction to N
(G)
φφ , which can be absorbed into N

(G)
φφ by modifying the power

spectra used in the filters.

7. 〈δ1δ1δ1 δ1δ1δ1〉: analogous to the fourth term in this list, this contraction gives an
integral that convolves different factors of the matter power spectrum together with
some wavenumber-dependent kernels. This term will be generically be of at least the
same order as the fourth term, and must be included. This term is also contained in
the T2211 trispectrum diagram.

8. 〈δ1δ1 δ1δ1δ1δ1〉: this term will be of at least the same order as the seventh term, and
must also be included. In perturbation theory, it is known as the T3111 diagram.

In appendix C, we present the full derivation of the terms from the list above that will be
relevant in the subsequent analysis: terms 2, 4, 5, 7, and 8. We summarize the result below,
omitting term 4 for the reasons given earlier:

〈
X̂(L1,k‖1)Ŷ ∗(L2,k‖2)

〉
= (2π)2δD(L1−L2)

[
N

(G)
XY (L1,k‖1)δK

k‖1,k‖2
+N

(nG,φ)
XY (L1,k‖1,k‖2)

+N
(nG,P )
XY (L1,k‖1,k‖2)+N

(nG,c)
XY (L1,k‖1,k‖2)

]
,

(2.37)

where

N
(nG,φ)
XY (L, k‖1, k‖2) =

N
(G)
XX(L, k‖1)N

(G)
Y Y (L, k‖2)

N
(G)
Xφ (L, k‖1)N

(G)
Y φ (L, k‖2)

CφφL ,

N
(nG,P )
XY (L, k‖1, k‖2) =

N
(G)
XX(L, k‖1)N

(G)
Y Y (L, k‖2)

N
(G)
Xδ (L, k‖1)N

(G)
Y δ (L, k‖2)

Lχ2Pδ1(L/χ) , (2.38)
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and

N
(nG,c)
XY (L,k‖1,k‖2)

=

∫
`1

∫
`2

gX(`1,L−`1,k‖1)gY (`2,L−`2,k‖2)

×
[
Lχ2

(
P [`1−`2,k‖1−k‖2]fδ(`1,−`2,k‖1,−k‖2)fδ(L−`1,−L+`2,−k‖1,k‖2)

+
[
k‖1↔−k‖1

])
+6L−1χ−2C`1(k‖1)C`2(k‖2)

×
(
P [L−`1,k‖1]

{
F

(s)
3 ((`1,k‖1),(L−`1,−k‖1),(−`2,−k‖2))+

[
k‖2↔−k‖2

]}
+P [−L+`2,k‖2]

{
F

(s)
3 ((`1,k‖1),(−`2,−k‖2),(−L+`2,k‖2))+

[
k‖1↔−k‖1

]})]
,

(2.39)

making use of the following shorthands:

P [`i, k] ≡ Pδ1

√ `2i
χ2

+ k2

 , (`i, k) ≡ (`i1/χ, `i2/χ, k) . (2.40)

The “P” and “c” superscripts on the non-Gaussian terms represent those proportional to the
long mode power spectrum and those from the remaining connected contribution to the Ilen

four-point function, respectively. Importantly, when a given φ mode is reconstructed using
the quadratic estimator, estimates obtained using different k‖ values have correlated noise,
so the minimum variance combination would not use the simple inverse-variance weighting
from eq. (2.16). Instead, the optimal combination of the different estimators is given by [21]

φ̂combined(L) =

∑jmax

j1,j2=jmin

[
N−1
φφ (L)

]
j1j2

φ̂(L, k‖2)∑jmax

j1,j2=jmin

[
N−1
φφ (L)

]
j1j2

, (2.41)

and has variance given by

N
(full,combined)
φφ (L) =

 jmax∑
j1,j2=jmin

[
N−1
φφ (L)

]
j1j2

−1

. (2.42)

In these expressions, N−1
φφ (L) is the inverse of the noise covariance matrix Nφφ(L), which has

components Nφφ,j1j2(L) given by

Nφφ,j1j2(L) = N
(G)
φφ (L, 2πj1/L) δK

j1,j2 +N
(nG,P )
φφ (L, 2πj1/L, 2πj2/L)

+N
(nG,c)
φφ (L, 2πj1/L, 2πj2/L) . (2.43)

Even if the Gaussian term dominates over the non-Gaussian terms for a given j (which is
usually the case), these correlations imply that as estimates from more and more j values
are combined, the correlated terms will act to slow the pace at which the combined noise
decreases with jmax.
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In the next subsection, we will investigate the relative sizes of the four terms in eq. (2.37)
as a function of redshift and angular resolution (i.e. `max). For that investigation, and all other
numerical computations in this paper, we use CAMB [62] to compute linear and nonlinear
matter power spectra (the latter with Halofit [59]). The various integrals are then computed
using an extended version of Copter [63] that uses the Monte Carlo integration routines from
the CUBA library [64]. We have checked that a subset of these computations agree with a
separate Mathematica-based implementation.

2.4 Application to generic intensity maps

To gain intuition for the different contributions to the covariance of the lensing estimator
φ̂(L, k‖) for different k‖ values, we will consider intensity observations made in several redshift
bands, each with width ∆z = 0.5 and centered on redshifts from 2 to 8. For the instrumental
noise, we will consider a toy model in which the noise is zero for ` below some `max and
infinite for ` > `max. As stated earlier, we will assume that the intensity is a deterministic
linear tracer of the matter overdensity; this approximation is most suspect at z ∼ 8, when
reionization is taking place, but our focus here is on how the gravitational and lensing effects
scale with redshift, rather than other physical phenomena which might affect our ability to
perform lensing reconstruction.

In figure 2, we show each of the four terms in eq. (2.37) from observations made in four
different redshift bands and at three different angular resolutions (`max values). All curves
are computed at a fixed value of k‖ ≈ 0.13hMpc−1 , corresponding to j = {10, 5, 3, 2} for
z = {2, 4, 6, 8}. The blue dashed and red dotted curves show the leading two effects of grav-

itational mode-coupling, one (N
(nG,P)
φφ ) directly proportional to the power spectrum of long

modes of the matter overdensity, the other (N
(nG,c)
φφ ) a convolution over various gravitational

kernels and power spectra; both have been computed analytically for the first time in this

work. We have not plotted any terms that are off-diagonal in k‖ (i.e. N
(nG,c)
φφ (L, k‖1, k‖2) or

N
(nG,P )
φφ (L, k‖1, k‖2) with k‖1 6= k‖2), but they typically have similar amplitude and shape to

the diagonal terms. We find that in many of the cases in figure 2, at least one of the grav-
itational terms dominates over the lensing power spectrum over a wide range of scales, and
therefore these terms must be handled appropriately in order to accomplish a robust detection
of lensing. Several characteristics of these curves can be straightforwardly understood:

• First, the Gaussian noise per mode, N
(G)
φφ , essentially counts the inverse of the number

of angular modes up to `max used in the lensing reconstruction. This number is constant

in redshift but scales like `−2
max, implying the same scaling for N

(G)
φφ [61]. In the presence

of more realistic noise on source field measurements, N
(G)
φφ counts the number of modes

that can be “imaged” by virtue of being above the noise level.

• Second, the shapes of the three gravitational curves can be understood by examining
the `� L limits of their associated expressions, since the largest contribution to each
term will come from `-modes for which this is true. We give the `� L limits of fφ and
fδ in appendix D.1, and by using these in the expressions in sections 2.3.2 and 2.3.3,

we find that in this limit, N
(G)
φφ and N

(nG,c)
φφ scale like L−4, while N

(nG,P )
φφ scales like

L−4Pδ1(L/χ). Thus, when multiplied by L4 as in figure 2, the first two terms take the

form of white noise on L4CφφL , while the third term has roughly the shape of the linear
power spectrum, with deviations occurring as L approaches `max.
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Figure 2. Different contributions to the power spectrum of the quadratic lensing estimator φ̂(L, k‖)
discussed in section 2.3.3, assuming noise-free line intensity maps over ∆z = 0.5 and ` < `max

(with infinite noise for ` > `max). All plots are made with k‖ ≈ 0.13hMpc−1 , corresponding to j =
{10, 5, 3, 2} for z = {2, 4, 6, 8}. We consistently find large ranges of scales over which the non-Gaussian
contributions from gravitational nonlinearity (blue dashed and red dotted curves) are comparable to
the lensing potential power spectrum (black solid curves), although subdominant to the pure Gaussian
contribution (green dashed curves). This conclusion is unchanged for observations with more realistic
noise levels. Simple scaling arguments suffice to explain many of the trends seen in these panels, as
discussed in the main text.

• Third, at fixed `max, the magnitude of the non-Gaussian gravitational terms decreases
with increasing redshift. This scaling can be accounted for by linear growth of the
matter power spectrum (both non-Gaussian gravity terms scale like Pδ1), along with
redshift-dependence of the prefactor L−1χ−2.

• However, at fixed redshift, the scaling of the gravitational terms with `max is more
complex, due to the possibility of cancellations occurring in the integrals as `max is

varied. The N
(nG,c)
φφ term consistently decreases in amplitude as `max increases, up to

factor of a few from `max = 500 to 5000 while N
(nG,P )
φφ can even scale non-monotonically

with `max, due to chance cancellations inside the N
(G)
φδ integral (which also depend on

the value of k‖). This is what causes the N
(nG,P )
φφ curves in the rightmost column of

figure 2 to be lower than in the other two columns.
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Figure 3. Contributions to the power spectrum of the combined lensing estimator when 3 ≤ j ≤ 20
are summed using eq. (2.42), when the non-Gaussian gravitational contributions are either neglected
(dotted lines) or included (solid lines), for the same cases considered in figure 2. The importance of
these contributions increases with the number of small-scale modes used in the lensing reconstruction,
and can potentially increase the total contribution to the φ̂ power spectrum (which affects the noise per

reconstructed φ mode, along with the additive bias and noise on CφφL ) above the Gaussian contribution
by a factor of several. We do not show the `max = 5000 case for z = 2, because this case is beyond
the validity of our tree-level calculation (see figure 1).

For a given j, the errorbar is typically dominated by Gaussian noise, which, being
uncorrelated between different j values, is reduced in the combined estimator. However, as
more and more j values are combined, eventually the Gaussian piece drops below the non-
Gaussian piece, which, since it correlates different j values, does not drop nearly as rapidly
with jmax. The result is that the combined noise per φ mode can generally be dominated
by the non-Gaussian contribution. Figure 3 shows this combined noise, computed from
eq. (2.42) for 3 ≤ j ≤ 20 when the non-Gaussian gravitational terms are either neglected or
included. As expected, the importance of the non-Gaussian terms generally grows as smaller
and smaller-scale modes are used in the reconstruction process, increasing the total noise per
mode by as much as a factor of a few in the examples considered here.

3 Bias-hardened estimators

3.1 Lensing

Figures 2 and 3 make it clear that gravitational mode couplings will significantly affect
lensing maps constructed from line intensity mapping observations using a CMB-lensing-
type quadratic estimator, simply by virtue of these observations tracing structures that have
begun to cluster nonlinearly on relevant scales. Mode by mode, these maps will pick up a
bias corresponding to modes of the matter overdensity [see eq. (2.33)]. An estimate of the
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lensing potential power spectrum will pick up both an additive bias and an extra source of
statistical noise. Ref. [10] has recently treated this by modifying the weights in the lensing
estimator to downweight mode combinations that are coupled together through gravity or
other nonlinear effects. Here we explore a different approach.

In cases where multiple mode-couplings are present, each sourced by a different field (in
this case, either φ or δ1), the corresponding quadratic estimators can be modified to subtract
off unwanted mode-couplings [38]. The idea is to form linear combinations of estimators for
each effect that are free from bias from the other effect, at leading order. This technique has
been applied to CMB lensing measurements to reduce unwanted mode couplings from the sky
mask, anisotropic noise, and unresolved point sources [3]. Since gravitational nonlinearities
also induce mode couplings that could potentially mimic the effect of lensing, it is natural to
apply this “bias-hardening” procedure to the case at hand.

For a fixed realization of φ(L) and δ1(L/χ, 0), the expectation values of our estima-
tors for φ and δ1, eqs. (2.33) and (2.34), can be written as (suppressing some arguments
for brevity)  〈

φ̂(L)
〉〈

δ̂(L/χ)
〉 =

[
1 N

(G)
φφ /N

(G)
φδ

N
(G)
δδ /N

(G)
φδ 1

] [
φ(L)

δ1(L/χ, 0)

]
. (3.1)

Bias-hardened estimators φ̂H and δ̂H are formed simply by solving this system for the desired
quantities. We obtain

φ̂H ≡ 1

1−N (G)
φφ N

(G)
δδ

[
N

(G)
φδ

]−2

(
φ̂−

[
N

(G)
φφ /N

(G)
φδ

]
δ̂
)
,

δ̂H ≡ 1

1−N (G)
φφ N

(G)
δδ

[
N

(G)
φδ

]−2

(
δ̂ −

[
N

(G)
δδ /N

(G)
φδ

]
φ̂
)
, (3.2)

whose expectation values are then just φ(L) and δ1(L/χ, 0), as desired. A short calculation
yields the Gaussian part of the covariance of φ̂H:

CovG

[
φ̂H(k‖1), φ̂H∗(k‖2)

]
= δK

k‖1,k‖2

N
(G)
φφ (k‖1)

1−N (G)
φφ (k‖1)N

(G)
δδ (k‖1)

[
N

(G)
φδ (k‖1)

]−2

≡ δK
k‖1,k‖2

N
(G)
φφ (k‖1)

1−
[
ρ(φ̂, δ̂)k‖1

]2 , (3.3)

where we have restored the k‖ arguments but left L implicit, assuming that all factors

are evaluated at the same L value. In the above expression, ρ(φ̂, δ̂)k‖ is the correlation

coefficient between the original φ̂ and δ̂ estimators, both evaluated at k‖. This indicates
that if the original estimators were highly correlated, the Gaussian part of the variance of
the bias-hardened estimator φ̂H will be boosted by a large amount, while if the estimators
were relatively uncorrelated to start with, there will be little penalty in applying the bias-
hardening procedure. The gravitational contribution to the covariance of φ̂H is similarly
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given by(
1−

[
ρ(φ̂, δ̂)k‖1

]2
)(

1−
[
ρ(φ̂, δ̂)k‖2

]2
)

CovNG

[
φ̂H(k‖1), φ̂H∗(k‖2)

]
= N

(nG,c)
φφ (k‖1, k‖2) +

N
(G)
φφ (k‖1)N

(G)
φφ (k‖2)

N
(G)
φδ (k‖1)N

(G)
φδ (k‖2)

N
(nG,c)
δδ (k‖1, k‖2)

−

N
(G)
φφ (k‖2)

N
(G)
φδ (k‖2)

N
(nG,c)
φδ (k‖1, k‖2) + [1↔ 2]

 . (3.4)

One can see by inspection of eq. (3.4) that the N
(nG,P )
φφ term from the variance of

the original φ̂ estimator cancels completely in the variance of φ̂H. Thus, the bias-hardened
estimator will be free of the negative consequences of this term: an additive mode-by-mode
bias in lensing maps constructed by the original estimator [see eq. (2.34)], and additive
bias and noise on estimates of the lensing potential power spectrum. As mentioned earlier,
the Gaussian contribution will be increased by a factor related to the correlation between
the original φ̂ and δ̂ estimators, and we find that the remaining non-Gaussian contribution,

N
(nG,c)
φφ (which cannot be removed with bias-hardening), is boosted by a similar amount

[although it is less evident from the expression in eq. (3.4)]. However, if the original value

of N
(nG,P )
φφ is greater than the boosted value of N

(nG,c)
φφ , the non-Gaussian additive bias

on the lensing potential power spectrum will see a net reduction. The Gaussian additive
bias on the power spectrum will be increased, but such a bias is much easier to subtract
than non-Gaussian contributions, since it can measured from the observed realization of the
sky and then subtracted [38, 65]. Furthermore, once we combine lensing measurements from
multiple j values, the total noise per mode in the lensing maps can in some cases also see a net
reduction, compared to the case of no bias hardening, if small enough angular scales are used.

The effects of lensing and gravitational nonlinearity can be distinguished because they
induce distinct forms of anisotropy and scale-dependence in the correlations of small-scale
modes; for a more detailed discussion, see appendix D.2. These distinctions disappear in
the χk‖ � ` limit, preventing the bias-hardening procedure from separating the two sources
of mode-coupling. In particular, for χk‖ ∼ 2`max, the correlation coefficient is within a
few percent of unity, and increases further for higher k‖. In this regime, the bias-hardened
estimator will be too noisy to be useful. Thus, we can take k‖ ∼ 2`max/χ as the maximum
k‖ value from which we can extract useful lensing information, even if there are shorter
line-of-sight modes that are signal-dominated in a given observation. This can imply that
the frequency resolution that is useful for lensing analysis is set by an instrument’s effective
angular resolution, rather than its frequency channel width or noise level.

Figure 4 shows an example of the individual contributions to the variance of φ̂ (upper
panels) and φ̂H (lower panels), for χk‖ = 0.1, 0.7, and 1.5 times `max. As k‖ increases towards
`max/χ, the Gaussian and connected non-Gaussian terms increase after bias-hardening, and
for k‖ > `max/χ, the increase is significant. However, in all cases there is a large reduction in
the total non-Gaussian contribution to the noise per mode for ` . 200, and similar conclusions

are generic for other observations in ranges where N
(nG,P )
φφ � N

(nG,c)
φφ without bias hardening.

As mentioned above, lensing reconstructions from different j values are correlated
by non-Gaussianities from gravity, and these correlations can also be greatly reduced
using bias-hardening. Figure 5 shows the correlation matrix of the noise on φ̂(L; k‖),
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Figure 4. Different contributions to the power spectrum of the quadratic lensing estimator φ̂(L; k‖)
discussed in section 2.3.3, with the same assumptions and color scheme as figure 2, but comparing
the contributions to the non-bias-hardened (upper panels) and bias-hardened (lower panels) estima-
tor’s power spectrum for three choices of k‖, at redshift z = 6 and with `max = 5000. By design,

bias-hardening removes the N
(nG,P )
φφ contribution. For k‖ � `max/χ, the other terms are not signifi-

cantly affected, but once k‖ ∼ `max/χ, the other terms grow in amplitude, making the bias-hardened

estimator noisier overall. However, as long as the N
(nG,c)
φφ term does not grow beyond the original

size of N
(nG,P )
φφ , bias-hardening still removes the dominant source of non-Gaussian additive bias on

an estimate of CφφL , which would otherwise be more difficult to model and remove than the Gaus-
sian contribution.

Nφφ,j1j2/[Nφφ,j1j1Nφφ,j2j2 ]1/2 with Nφφ,j1j2 from eq. (2.43), for the same redshift range and
angular resolution as figure 4, both before and after bias-hardening. Without bias-hardening,
there are significant correlations between reconstructions from different j values, which will
limit the usefulness of combining them into a single lensing measurement, while after bias-
hardening, these correlations have been substantially reduced, since the covariance matrix is
then dominated by the (diagonal) Gaussian contribution.

As mentioned above, it is possible to subtract the realization of Gaussian noise from
the power spectrum of a reconstructed lensing map [38, 65], such that the dominant additive

bias on CφφL is given by the non-Gaussian contributions N
(nG,P )
φφ and N

(nG,c)
φφ . In particular,

for maps constructed using different k‖ values in the estimator φ̂(L, k‖), the Gaussian con-
tribution to each map can be subtracted, and the maps can then be combined according to
eq. (2.41). The non-Gaussian bias on the power spectrum of this combined map will then be
given by

N
(nG,combined)
φφ (L) = N

(full,combined)
φφ (L)2

×
jmax∑

j1,j2,j3,j4=jmin

[
N−1
φφ (L)

]
j1j2

[
N (nG)
φφ (L)

]
j2j3

[
N−1
φφ (L)

]
j3j4

, (3.5)

where N (nG)
φφ (L) is given by eq. (2.43) with the Gaussian term subtracted off.
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Figure 5. The noise correlation matrix, Nφφ,j1j2/[Nφφ,j1j1Nφφ,j2j2 ]1/2 with Nφφ,j1j2 from eq. (2.43),
for the same redshift range and angular resolution as figure 4, both before (left panel) and after (right
panel) bias-hardening. The non-Gaussian contributions are significantly correlated between different
values of j, but bias-hardening removes the dominant non-Gaussian contribution, and therefore greatly
reduces the correlation in the total noise. (Observations at lower angular resolution see a smaller
reduction in their noise correlation matrix.)

In figure 6, we plot this bias evaluated at L = 50, which is roughly where the signal to
noise on CφφL peaks; therefore, the result is representative of the bias on a measurement of

the overall amplitude of CφφL . We also plot the expected errorbar on this amplitude. The
upper panels correspond to a fixed value of k‖χ = 2000, while the lower panels correspond
to combining estimators for 3 ≤ j ≤ 10. As we might expect from the discussion of figure 4,
the upper panels show that, for k‖χ . `max, bias-hardening indeed reduces this bias, because

the (dominant) N
(nG,P )
φφ contribution is completely removed while the (subdominant) N

(nG,c)
φφ

contribution is basically unaltered. For k‖χ & `max, however, bias-hardening generically
increases the non-Gaussian bias beyond its unhardened value, again because the two mode-
couplings that bias-hardening is designed to separate become less distinguishable in the high-
k‖ limit. The upper row of panels in figure 6 illustrates this transition for k‖χ = 2000. (They
also show that the transition does not occur precisely at k‖χ ∼ `max: when k‖χ = 2000, we
find that the two bias curves cross closer to `max ∼ 1000 than 2000.)

In the lower panels of figure 6, we again find that the non-Gaussian bias is decreased
by bias-hardening for higher values of `max, but increases for lower `max values. We also
find that when estimates from several j values are combined, the total lensing errorbar is
reduced to a much greater extent than the non-Gaussian bias. This is because, as explained
in section 2.4, the Gaussian contribution to the lensing errorbar is reduced in the sum over
j, while the non-Gaussian contribution, being correlated between different j values, is not
reduced by the same amount. A comparison between the upper and lower panels shows that
the errorbar decreases more rapidly with jmax when bias-hardening is applied, as expected
from the discussion of figure 5.

For sufficiently high `max values, bias-hardening is successful in reducing the total non-
Gaussian bias. However, even after bias-hardening, this bias is still much larger than the
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Figure 6. The fractional bias on an estimation of CφφL at L = 50 (representative of the bias on the

overall amplitude of CφφL ) arising from non-Gaussian terms in the lensing estimator covariance, for
the same observations considered in figures 2–5. We show this bias both before (blue dashed lines)
and after (green solid lines) applying bias-hardening. The shaded regions show the total errorbar on

a measurement of the amplitude of CφφL . The upper panels correspond to a fixed value of k‖χ, while
the lower panels correspond to combining lensing estimates from 3 ≤ j ≤ 10. For sufficiently high
(low) `max, bias-hardening decreases (increases) the bias on a measurement of CφφL (the reasons for
the latter are explained in the main text). In a combined lensing estimate, the errorbar is reduced
more than the bias, because the Gaussian contribution to the errorbar is reduced more rapidly (due
to the lack of correlation between different j values, in contrast to the non-Gaussian part). Thus,
even with bias-hardening, the combined estimator exhibits a bias that exceeds the errorbar, and that
will need to be modeled if the goal is to measure the lensing auto spectrum.

statistical errorbar, indicating that some modeling efforts will likely be required to access
the lensing power spectrum from measurements such as these. Using different weights in the
lensing estimator, as in ref. [10], may also reduce the additive bias, but we leave a detailed
investigation to future work. Finally, we note that when jmax is such that k‖max & `max/χ,
the non-Gaussian bias after bias-hardening tends to increase as jmax is increased, while the
total errorbar saturates around that point, implying that choosing jmax such that k‖max ∼
`max/χ will optimally minimize both the errorbar and bias on CφφL . Meanwhile, lowering jmin

(assuming that foregrounds do not prevent us from doing so) can significantly reduce the
errorbar for lower `max, but does not affect the bias.

Before moving on, we note that, for numerical evaluation, it is better to rewrite the
denominator of eq. (3.3) like so:

1−N (G)
φφ N

(G)
δδ

[
N

(G)
φδ

]−2
= N

(G)
φφ N

(G)
δδ

([
N

(G)
φφ

]−1 [
N

(G)
δδ

]−1
−
[
N

(G)
φδ

]−2
)
, (3.6)
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and further rewrite the factor in parentheses as (dropping all k‖ arguments for brevity)

[
N

(G)
φφ (L)

]−1 [
N

(G)
δδ (L)

]−1
−
[
N

(G)
φδ (L)

]−2

=

∫
`1

∫
`2

fφ(`1,L− `1)fδ(`2,L− `2)[
Ctot
` Ctot

|L−`|

]2 (fφ(`1,L− `1)fδ(`2,L− `2)− [φ↔ δ]) . (3.7)

A similar procedure is advisable to combine the integrals on the right-hand side of eq. (3.4).
Evaluating these combined integrands reduces the requirements on numerical precision in
cases where the results are close to zero. Similar manipulations are known to be useful for
evaluating loop integrals in large-scale structure perturbation theory in certain cases [51].

3.2 Tidal reconstruction

So far in this work, we have seen several situations in which the N
(nG,P )
φφ term (which is

proportional to the power spectrum of long density modes) is comparable to, or even larger
than, the lensing potential power spectrum which we have focused on as our signal of interest.
(For example, compare the solid black and short-dashed blue curves in several panels of
figure 2.) In these situations, it is natural to ask whether we can use quadratic estimators
to reconstruct the long density modes themselves, treating lensing as a contaminant instead
of the end goal. Indeed, this topic has already been explored several times in the literature:
isotropic distortions of the matter power spectrum can be used to learn about so-called
“super-sample modes” that affect covariances between quantities of cosmological interest
(e.g. [66, 67]), while these modes can also be accessed through their effect on the gravitational
tidal tensor on small scales, in a procedure often referred to as “tidal reconstruction” [39–
41]. Such a procedure could in principle yield cosmic-variance-free measurements of the
logarithmic growth factor through a joint analysis of anisotropic galaxy power spectra and
reconstructed long modes. The reconstructed modes could further be cross-correlated with
CMB lensing or temperature, the latter yielding information about the integrated Sachs-
Wolfe effect (e.g. [41, 68]).

We have presented an estimator for long modes of the overdensity in section 2.3.3
[specifically, eq. (2.26) for δ̂, using the filter g given in eq. (2.31) with the mode coupling
kernel fδ given by eq. (2.25)]. Just as the quadratic lensing estimator in that section will be
biased by gravitational nonlinearities, the corresponding δ estimator will be biased by lensing,
but this can be overcome with the bias-hardening procedure from section 3.1. As with the
lensing estimators, we have only presented calculations at tree-level in perturbation theory,
and this sets the range of validity of our results. By contrast, refs. [39–41] use configuration-
space quadratic estimators in their tidal reconstruction, similar to those presented for lensing
in refs. [26, 27] (see also [44, 69]). When testing this approach on simulations, the authors
first apply a Gaussianizing transform to the density field, allowing them to utilize smaller
scales in the reconstruction procedure, at the possible expense of theoretical control over the
results. Their estimators will also be contaminated by lensing, although this can likely be
mitigated by making use of the full three-dimensional tidal tensor. A detailed comparison
between their procedure and our estimators would be instructive, but we leave this for future
work. As a separate topic, it would also be interesting to investigate whether the “response”
formalism described in refs. [70, 71] could allow for filters that are valid at smaller scales
than the tree-level calculation we have carried out.
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Figure 7. As figure 3, but showing signal and noise curves corresponding to the density power
spectrum, which can be reconstructed using the formalism we have presented. These “noise curves”
represent the noise per reconstructed density mode, and also additive bias and noise on the recon-
structed density power spectrum. As in figure 3, we omit the `max = 5000 case for z = 2, because our
tree-level calculation is not valid in that case. In general, these noises and bias have lower amplitude
in this case than for lensing reconstruction. Thus, there is promise for a successful application of this
technique to low-redshift intensity maps.

In figure 7, we repeat the computations of figure 3, but instead computing the contribu-
tions to a reconstruction of the power spectrum of long density modes, either neglecting or
including the leading non-Gaussian terms (which now include a lensing contribution). The
noise per reconstructed density mode is much lower in this case than for lensing reconstruc-
tion, regardless of the angular resolution assumed for the observations. Furthermore, the
non-Gaussian contributions generally impart less bias to an estimate of the long-wavelength
matter power spectrum, particularly at lower redshifts.

In figure 8, we repeat the computations of the bottom panels of figure 6, but compute the
total errorbar on the measured amplitude of Pδ, along with the bias from non-Gaussian terms.

In this case, the bias arises from a lensing term and a tree-level gravitational term (N
(nG,c)
δδ ,

in our notation). Note that, at a given value of k‖, the lensing contribution dominates the
total bias when `max & k‖χ, while the gravitational term dominates when `max . k‖χ. At
high enough `max, bias-hardening reduces both the bias and total errorbar, but this does
not occur within the range we plot in figure 8. As in the case of lensing reconstruction, we
find that the non-Gaussian bias far exceeds the errorbar in a combined tidal reconstruction
estimator. After bias-hardening, the bias is completely determined by N

(nG,c)
δδ , which also

depends on Pδ through an integral against filters and other factors. Thus, the presence of
this bias could possibly enhance a measurement of Pδ. Note that for cross-correlations of the
reconstructed density with other tracers, this bias will not be present, but will contribute to
the noise in the cross power spectrum.
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Figure 8. As in the bottom row of figure 6, we show the fractional bias on an estimation of Pδ(L/χ)
at L = 50 arising from non-Gaussian terms, which now include a lensing term and a gravitational
term. The shaded regions show the total errorbar on a measurement of the amplitude of Pδ(L/χ). As
in lensing reconstruction, the combined estimator exhibits a bias that exceeds the errorbar. However,
after bias-hardening, this bias only depends on an integral over several factors of Pδ, and therefore it
could possibly be used to enhance a measurement of Pδ using this technique.

Overall, figure 7 indicates that reconstruction of the long-mode density power spectrum
may be within reach of low-redshift intensity mapping surveys, such as those performed by
CHIME, HIRAX, or GBT. This possibility would be well worth exploring in future work.

4 Forecasts for specific observations

In this section, we consider a few specific line intensity mapping efforts, and examine their
expected performance in measuring lensing using the estimators we have discussed. Note that
these forecasts should all be taken as best-case scenarios, due to our idealistic assumptions
about both theoretical systematics (such as nonlinear bias in the source field) and instru-
mental issues (such as calibration). In particular, uncertain knowledge of the statistics or
linear bias of the source field will lead to a multiplicative offset on the lensing and tidal
reconstructions [21]. Where possible, we have included a rough accounting for uncertainties
arising from foreground subtraction, but we have generally opted for simplicity over realism
in this respect.

We consider SKA1-Low and CHIME/HIRAX observations of 21cm radiation in sec-
tions 4.1 and 4.2, respectively. In section 4.3, we consider a single-dish intensity mapping
survey motivated by the CCAT-prime telescope’s planned CII observations. In section 4.4,
we summarize the predicted signal to noise on detections of either the lensing auto spectrum,
or cross-correlations between lensing and galaxy clustering or cosmic shear from LSST.

4.1 SKA1-Low

As an example of line intensity maps observed at reionization-era redshifts, we will consider
the low-frequency component of the Square Kilometre Array project, which will observe 21cm
radiation from the spin-flip transition of neutral hydrogen between ∼50 and ∼350 MHz,
corresponding to 3 . z . 27 (e.g. [72]). Following previous work on 21cm lensing [19, 30],
we will consider a survey aimed at observing the epoch of reionization, covering 27deg2 and
6 < z < 14 (with the minimum redshift set roughly by where reionization is expected to
have completed, and the maximum set roughly by where measurements of 21cm fluctuations
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become noise-dominated). We divide this range into bands that span 5MHz in the redshifted
21cm frequency.

In this era, in which the 21cm spin temperature far exceeds the mean CMB temperature,
the 21cm brightness temperature is [19]

T (x; z) ≈ 26 [1 + δb(x; z)]xH(x; z)

(
Ωbh

2

0.022

)[(
0.15

Ωmh2

)(
1 + z

10

)]1/2

mK , (4.1)

where δb is the baryon density contrast, xH is the neutral fraction, and Ωbh
2 and Ωmh

2 are
the physical baryon and matter density parameters. We will consider a simplified situation
in which the HI (and therefore baryon) distribution directly traces the underlying matter
distribution, so that δb = δ, and also neglect fluctuations in the neutral fraction (effectively
assuming instantaneous reionization at z = 6), setting xH = 1. (We have also neglected the
impact of fluctuations in the gas temperature.) In reality, each of these effects will need to
be accounted for in a lensing analysis of 21cm observations around reionization, but in this
work we are mainly focused on the interplay between nonlinear evolution of δ and lensing
reconstruction, so these simplifications will suffice for our purposes. The mean brightness
temperature then becomes

T̄ (z) ≈ 26

(
Ωbh

2

0.022

)[(
0.15

Ωmh2

)(
1 + z

10

)]1/2

mK , (4.2)

and the corresponding 3d power spectrum (assuming no time evolution with the observed
redshift band) is

PT (k; z) = T̄ 2(z)
(
1 + fµ2

)2
DFoG(k‖, z)Pδ(k; z) , (4.3)

with the squared factor accounting for the leading effect of redshift space distortions on large
scales, where f ≡ ∂ logD(a)/∂ log a is the logarithmic derivative of the linear growth factor
D(a) and µ2 ≡ k2

‖/k
2. We use the best-fit Lorentzian model6 from ref. [73] for redshift-space

“finger of God” damping at small scales, DFoG(k‖, z). To connect with the formalism in
the previous sections of this paper, the brightness temperature can be rewritten in terms
of an intensity via the Rayleigh-Jeans law, but it is not necessary to explicitly perform this
translation because the resulting prefactor will cancel out of any lensing-related expressions.

For the observational noise on the 21cm angular power spectrum, we take the interfer-
ometer thermal noise expression from ref. [30], evaluated at the frequency corresponding to
the mean of the observed frequency band:

CN
` (k‖) =

[
λ2

Ae
F

(
ν

νc

)]2 T 2
sys(ν)

NpolBt0

1

n(`/2π, ν)
, F (x) ≡

{
1 , x ≤ 1
x2 , x > 1

. (4.5)

We use the values for phase 1 of SKA-Low, also from ref. [30]: Ae = 925 m2 is the effective
receiving area of a single station, νc = 110 MHz is the “critical frequency” above which the

6For reference, this model is given by

DFoG(k‖, z) =

[
1 +

1

2
k2‖σp(z)2

]−1

, σp(z) = [9.12 Mpc] (1 + z)−1.15 exp

[
−
( z

12.0

)2
]
, (4.4)

where the numerical values were fitted to simulations of HI clustering at 1 . z . 6. The authors of ref. [73]
note that this model may overestimate the HI velocity dispersion on small scales, and therefore the small-scale
damping of the HI power spectrum caused by “fingers of God,” making this model a rather conservative choice
to use in forecasting.
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effective receiving area receives a multiplicative correction of (νc/ν)2, Npol = 2 is the number
of polarizations per receiver, B = 5 MHz is the observing bandwidth, and t0 = 2000 hrs is
the total observing time. The system temperature Tsys is the fundamental source of thermal
noise in an antenna, and has contributions from the instrumental receiver temperature, set
to 40 K, and galactic synchrotron radiation, which can be approximated as

Tsys(ν) = 40 K + 66
( ν

300 MHz

)−2.55
K . (4.6)

Finally, n(u, ν) is the time-averaged number density of baselines in the uv plane, evaluated on
u = `/2π in eq. (4.5). For a circularly-symmetric array of receivers, this can be approximated
by [19]

n(u, ν) ≈
∫
d2xP(x+ λu)P(x) , (4.7)

where P(x) is the radial profile of the antenna distribution on the ground, with dimensions of
length−1. (Ref. [19] uses a different convention for P: its version of this expression has a pref-
actor of λ2, which requires that P have dimensions of length−2.) This function must be nor-
malized to equal the number of receiver pairs when integrated over the upper-half-uv-plane:∫

UHP
d2un(u, ν) =

Nrec(Nrec − 1)

2
. (4.8)

We find that if P(x) is taken to be a Gaussian,

P(x) =
1√
2πσ

e−x
2/2σ2

, (4.9)

with σ = 550 m, the noise power spectrum resulting from eq. (4.5) is a good match to that
calculated in ref. [30] from a more realistic computation of n(u, ν) (shown in their figure 1),
so we will use eq. (4.5) for our forecasts.

In the left panel of figure 9, we show 21cm angular power spectra corresponding to
different j (k‖) values, along with the thermal noise power spectrum from eq. (4.5), evaluated
for a 5MHz band centered at z = 8. The overall amplitude of the signal at low ` decreases
with increasing j, until dropping below the noise around j ∼ 13. (This number is about
j ∼ 17 at z = 6, and decreases monotonically with redshift.) The signal curves are flat in
C` for k‖ & `/χ, and take the shape of the matter power spectrum for k‖ . `/χ. The high-`
upturn in the noise power spectrum is due to the increasing sparsity of longer baselines in
the interferometer, implying less sensitivity to small angular scales on the sky.

In the right panel, we show the noise per φ mode corresponding to the combined es-
timator for 3 ≤ j ≤ 20. Using jmin = 3 (which corresponds to k‖min ≈ 0.4hMpc−1 and

0.2hMpc−1 for 5MHz bands at z ≈ 6 and 20 respectively) is a rough way to incorporate
some of the effects of foregrounds, which will prevent measurements of low-k‖ modes due to
the expected smoothness of the dominant foregrounds’ spectral behavior. While one could
consider also excluding modes within a wedge-shaped region in Fourier space, to account
for beam chromaticity that mixes measurements line-of-sight and transverse modes [74], re-
cent work suggests that these modes might be recoverable more effectively than previously
thought [75]. Taking jmax = 20 incorporates the contribution from the first few noise-
dominated radial modes.

The non-bias-hardened curve takes the shape of the matter power spectrum at low `,

due to the dominance of the N
(nG,P )
φφ term, and is generally much larger than the contribution
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SKA1-Low, zmean = 8, Dz = 0.3

Figure 9. Left panel : 21cm angular power spectra [related to the 3d intensity power spectrum by
eq. (2.2)] corresponding to different j (k‖) values (solid lines), along with the thermal noise angular
power spectrum from eq. (4.5) (dashed line), for a 5MHz band centered at z = 8. At low `, the
amplitude of the signal decreases with increasing j, until it falls below the thermal noise around
j ∼ 13. Right panel: lensing potential power spectrum (solid black line) and combined lensing re-
construction noise for 3 ≤ j ≤ 20, in non-bias-hardened (long-dashed), bias-hardened (short-dashed),
and Gaussian-noise-only (dotted) cases. The nonlinearity of gravitational evolution increases the re-
construction noise substantially, and bias-hardening further increases the noise, but is necessary to
remove the large gravitational bias that would otherwise contaminate the lensing estimator.

of Gaussian noise alone. Meanwhile, once bias-hardening is applied, the N
(nG,P )
φφ contribution

is removed and the remaining variance scales like white noise on L4CφφL . At most scales, bias-
hardening increases the overall noise per mode, but will be necessary for many applications in
order to prevent large biases in the reconstructed lensing maps and associated power spectra;
indeed, in these forecasts, the non-Gaussian bias on the power spectrum, defined in eq. (3.5),
decreases by a factor of ∼10 after bias-hardening is applied. Note that, as discussed in
section 3, modes with k‖ & `max/χ generally have a minimal impact on the noise of the bias-
hardened estimator. For the redshift band centered on z = 8, modes with j & 10 contribute
negligibly to the total lensing detection.

A more optimistic stance on foreground cleaning could be incorporated by changing jmin

from 3 to 1, and this decreases the noise per φ mode by about a factor of 1.5. If one is instead
more pessimistic, increasing jmin to 6 (corresponding to ∼ 0.8hMpc−1 and 0.4hMpc−1 at
z = 6 and 20 respectively), the lensing noise increases by roughly a factor of 2.5. Thus, the
success of foreground subtraction will play a large role in determining the final precision of
lensing measurements.

A direct comparison of these results with the simulation-based approach of ref. [30] is
difficult due to different implementations of the lensing estimator and thermal noise compu-
tations; in particular, slight differences in the assumed n(u, ν) at high ` can make order-one
differences in the results, due to the importance of long baselines for lensing reconstruction.
Nevertheless, the relative amplitudes of the different curves indicate that gravitational non-
Gaussianities can have a large effect on the lensing estimator, even at the high redshifts
probed by SKA-Low.

4.2 CHIME & HIRAX

As an example of line intensity maps at lower redshifts, we will consider CHIME and HIRAX,
two experiments which will both observe 21cm radiation between 400 and 800 MHz, corre-
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sponding to 0.8 . z . 2.5. CHIME [76], located at a radio-quiet site in British Columbia,
Canada, is an array of four 20m × 100m cylindrical dishes, each outfitted with 256 feeds
positioned along the axis of each cylinder. HIRAX [77], located in South Africa, will be a
compact array of 32 × 32 6m dishes. Both experiments aim to measure baryon acoustic
oscillations, and also to perform wide searches for radio transients.

At the relevant redshifts, the mean 21cm brightness temperature can be written as
(e.g. [78])

T̄ (z) ≈ 0.3

(
ΩHI

10−3

)(
Ωm + (1 + z)−3ΩΛ

0.29

)−1/2(
1 + z

2.5

)1/2

mK , (4.10)

with ΩHI ≈ 5×10−4 [79]. The temperature power spectrum PT is then given by the following
modification of eq. (4.3):

PT (k; z) = T̄ 2(z)
(
bHI(z) + fµ2

)2
DFoG(k‖, z)Pδ(k; z) , (4.11)

where we use the model from ref. [80] for the linear HI bias bHI(z). We have neglected shot
noise, because the average of the shot noise models in ref. [80] is no higher than the thermal
noise for all redshifts we consider for these surveys, and comfortably below the thermal noise
at the redshifts where the signal to noise peaks.

In principle, one could adapt the thermal noise computation from section 4.1 for these
instruments, by computing n(u, ν) and also making appropriate modifications to account
for a drift-scan observation strategy. However, for a close-packed distribution of feeds or
dishes, one may use a simpler formalism in which the instrument is treated as having a single
large collecting area observing the sky with multiple simultaneous beams [81] (this approach,
realizable in practice with FFT beamforming [82], contains the same information as stacking
measurements from redundant baselines). In this case, the noise angular power spectrum is
given by [81, 83]

CN
` (k‖) =

T 2
sys(ν)

tpixB

Apix

W (`)
, (4.12)

where Apix and tpix are the angular area and observing time per angular “pixel” observed on
the sky, given respectively by

Apix =
λ2

nxnyAe
, tpix =

Apix

4πfsky
nbeamst0 . (4.13)

In Apix, nx and ny are the number of feeds or dishes along two orthogonal axes on the
ground, and, as before, Ae is the effective collecting area of a single element. For CHIME,
nx = 4, ny = 256, and Ae = (20× 80/256) m2 = 6.25m2 (since only 80m of each cylinder are
instrumented with feeds), while for HIRAX, nx = ny = 32 and Ae = (π32/4) m2 ≈ 28m2.
In FFT beamforming, the maximum number of beams with non-redundant information is
nbeams = (2nx − 1)(2ny − 1) [82], so we use that for each experiment. The window function
W (`) encodes the effective scale-dependence of the instrument response. A reasonable choice
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CHIME & HIRAX, zmean = 2, Dz = 0.16

Figure 10. Left panel: 21cm signal (solid) and thermal noise (dashed) angular power spectra for the
a redshift band with ∆z = 0.16 centered on z = 2, with CHIME noise in blue and HIRAX noise in
green. HIRAX can resolve smaller scales than CHIME due to its inclusion of longer baselines. At this
redshift, observations of 21cm fluctuations will be signal-dominated for j values that lie beyond the
range of validity of the perturbative predictions in this paper, although the predictions may be carried
to higher orders (or computed using simulations) to regain use of these modes. Right panel: lensing
potential power spectrum (solid black) and combined noise per φ mode for CHIME and HIRAX, in
non-bias-hardened (long-dashed) and bias-hardened (short-dashed) cases, with jmax determined by
where our perturbative calculations break down (as discussed in the main text). A significant detection
of the lensing potential auto spectrum will be challenging with these instruments, although detections
at the few-sigma level may be possible if the information from all available redshifts is combined.

for this is [83]

W (`) = Λ

(
`λ/2π

Lcyl

)
Λ

(
`λ/2π

NcylWcyl

)
(4.14)

for CHIME, and

W (`) = Λ

(
`λ/2π

nxDdish

)
Λ

(
`λ/2π

nyDdish

)
(4.15)

for HIRAX, using the triangular response function

Λ(x) =

{
1− |x|, |x| ≤ 1

0, |x| ≥ 1
(4.16)

with arguments that are simply ratios of angular scales projected on the ground to the total
dimensions of the interferometer. Finally, in both cases we assume fsky = 0.5 and t0 = 2.5
years of observing time (5 calendar years, assuming that roughly half of that time is usable
for 21cm observations [83]).

In figure 10, we consider an example redshift band within the CHIME/HIRAX frequency
range, with ∆z = 0.16 (corresponding to B ≈ 25MHz) and centered on z = 2. The left
panel shows 21cm angular power spectra for different j values, along with thermal noise for
CHIME and HIRAX. Due to its inclusion of longer baselines, HIRAX achieves an effective
angular resolution roughly twice that of CHIME, as quantified by the scale at which the noise
power spectrum exceeds the signal. Linear growth of the matter fluctuations increases the
amplitude of the signal curves at lower redshifts, while the noise decreases due to the lower
system temperature; both trends imply that modes with higher k‖ can be resolved at lower
redshift. In fact, more modes are resolvable in either case than fall within the range of validity
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of the tree-level calculations in this paper: for CHIME and HIRAX, our computations are
valid for j . 10 in the band used for figure 10. For comparison, modes up to j ≈ 14 can
be resolved above the noise in these surveys. The bias-hardened estimators impose further
limitations on the number of modes usable for the lensing auto spectrum: for CHIME, the
effective usable jmax in this band decreases to 7, while for HIRAX, the tree-level calculation
imposes a lower jmax than bias hardening does.7 More details about these various restrictions
for different bands can be found in appendix E.

In the right panel of figure 10, we show the noise per φ mode for the z ∼ 2 band for
both CHIME and HIRAX, either with or without applying bias-hardening to the lensing
estimator. For both surveys, bias-hardening increases the noise on a measurement of CφφL .
Even if the information from multiple redshift bands is combined, a significant detection of
CφφL will be challenging with these instruments, although cross-correlations with other tracers
of low-redshift structure could be more promising. We will return to this point in section 4.4.

For these forecasts, we use jmin = 3, which corresponds to k‖min ≈ 0.05hMpc−1 for
25 MHz bands in the CHIME/HIRAX redshift range. This is a conservative choice in the
sense that it is well above the expected minimum k‖ associated with CHIME foreground

cleaning, roughly 0.02hMpc−1 [84]. If we instead take jmin = 1, which is right at this limit,
the expected noise per φ mode from the redshift band in figure 10 decreases by about 30%
without bias-hardening or 60% with bias-hardening, while if we increase jmin to 6, the noise
increases by 30% and a factor of 5, respectively.

4.3 Single-dish survey

In the previous subsections, we have shown two examples of lensing reconstruction using
21cm maps. However, any line intensity maps will be lensed to some extent, and so we can
inquire about the detectability of lensing in other intensity mapping surveys. Each emission
or absorption line will be subject to different systematics or obstacles, such as different levels
of shot noise, confusion with other lines that redshift into the relevant frequency range, and
continuum foregrounds. These issues must be studied in detail before first detections can be
achieved, let alone detections of lensing in the maps, but such studies are underway (for a
recent summary, see ref. [37]), and the results of these studies can also likely be applied to the
issues relevant for lensing. In this subsection, we will not perform a comprehensive exploration
of the prospects for lensing of various forms of intensity mapping, but rather present a
representative example, to motivate interest in the general prospects for such measurements.

We consider observations of the 158 µm fine-structure line in ionized carbon (CII), ex-
pected to be a good tracer of star formation at high redshifts. Ref. [85] presents instrumental
parameters for a proposed CII intensity mapping survey, based on a specific model for the
clustered and shot-noise components of the CII emission power spectrum. However, subse-
quent work has explored a variety of other models that span a large amplitude range for both
components of the signal (e.g. [86–90]). Therefore, we do not rely on any single signal model,
but instead consider cosmic-variance-limited measurements up to some angular resolution
`max. We incorporate uncertainty in the strength of the signal compared to the instrumental
noise by considering different choices for jmax, because higher S/N will imply that modes
with higher j will be signal-dominated.

7The redshift-space “finger of God” damping primarily affects modes of the HI temperature that are
beyond the range of validity of our perturbative calculations, and/or that do not contribute to the bias-
hardened estimators, so the inclusion of this effect has negligible impact on the forecasts we summarize in
section 4.4.
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As with 21cm radiation, the CII signal will be dwarfed by continuum foregrounds,
which in this case will be dominated by far-infrared emission from dusty galaxies and dust
in the Milky Way (e.g. [91]). It has been shown that the foreground-subtraction techniques
developed for 21cm surveys, which rely on foregrounds being spectrally smooth, can also be
successful when applied to simulated CII surveys [91]. This implies that foregrounds will
likely render modes with low k‖ unusable for cosmology; in our forecasts in this section,
we assume this is true for the first two discrete k‖ values in each redshift band, so we take

jmin = 3 (corresponding to k‖min ≈ 0.08, 0.13, and 0.19hMpc−1 at z ≈ 4, 6, and 8) in
each band. Due to uncertainty about the relative amplitudes of the clustered and shot-noise
components of the power spectrum, we only consider the clustered component for simplicity.
If shot noise turns out to be significant on scales relevant for lensing reconstruction, one
should consider incorporating the modified estimators presented in refs. [28, 29].

We will consider angular resolutions and redshift ranges based on the CII survey pro-
posed to take place on the CCAT-prime telescope.8 Plans for this survey are broadly mod-
eled on the recommendations of ref. [85], observing CII emission over 3 . z . 9 with an
instrument mounted on the 6m CCAT-prime dish. For simplicity, we will consider observa-
tions over three redshift bands centered on z = 4, 6, 8 and each with ∆z = 0.5. By taking
θmin ≈ 1.22λCII(z)/Ddish with λCII = 158(1 + z) µm, and then using `max ≈ θmin/χ(z),
we find `max ≈ {20000, 14000, 11000} for z = {4, 6, 8}. To take a conservative stance on
instrumental uncertainties such as beam calibration, we will divide these values by 2 and
take the result to be the effective angular resolution in each band. For z = 4, this results
in an `max that exceeds the validity of our tree-level calculation for the lensing variance
(see figure 1). Therefore, we will further reduce `max(z = 4) to 3700, ensuring that our
computations are valid at j ≤ 20. (Note that this implies that our forecasts for z = 4
may be on the pessimistic side, pending an exploration of higher-order or simulation-based
calculations that extend to smaller scales.) Under these restrictions, we finally arrive at
`max ≈ {3700, 7000, 5500} at z = {4, 6, 8}. We also consider the same survey but for a 10m
dish, which gives `max ≈ {3700, 9000, 9000} at z = {4, 6, 8} (where in this case both z = 4
and z = 6 are restricted by our tree-level calculation).

In figure 11, we show the combined noise per φ mode for different values of jmax and
redshift, and for both dish sizes mentioned above. To avoid clutter, we only show the results
for the bias-hardened estimator. In most cases, we find that if modes of the CII intensity with
j ≤ 5 are signal-dominated (where j = 5 corresponds to k‖ ≈ {0.13, 0.22, 0.32}hMpc−1 in the
z = {4, 6, 8} bands), we can obtain signal-dominated reconstructions of the lensing potential
for at least L . 100. This conclusion is primarily due to the small angular scales probed
in these surveys, as opposed to the drift-scan 21cm interferometers like CHIME. However,
this high angular resolution is offset by a small field of view (again compared to drift-scan
instruments), implying that, in a survey lasting a few thousand hours, only a relatively small
patch of sky (e.g. 16 deg2 for the CII survey from ref. [85]) can be observed with reasonable
noise levels. This implies that the total signal-to-noise on either an auto- or cross-correlation

power spectrum will be correspondingly reduced, since the S/N scales like f
1/2
sky .

Decreasing jmin from 3 to 1 in each band improves the noise per φ mode by a factor of
2.5 for jmax = 3 but only a factor of 1.1 for jmax = 10, indicating that there is significant
lensing signal available in source modes with higher j. These modes will be damped slightly
by the “finger of God” effect, but we expect this to have a minor impact on the detectability

8http://www.ccatobservatory.org.
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Single-dish survey, bands with Dz = 0.5

Figure 11. Noise per reconstructed φ mode in three different redshift bands, for the single-dish
intensity mapping survey (modeled on the proposed CII survey from ref. [85]) described in the main
text, with either a 6m (upper panels) or 10m (lower panels) dish. We take jmin = 3 to account for
low-k‖ modes being lost to foreground cleaning, and show a few different choices for jmax as a way of
parameterizing the uncertainty in the signal-to-noise on the line intensity power spectrum. Thanks
to the high angular resolution achievable with a single dish, signal-dominated lensing maps can be
produced in most cases with only a modest jmax. However, the limited field of view of single-dish
surveys will restrict these maps to small patches of sky, and limit the detectability of the lensing
power spectrum.

of lensing. We can estimate this damping using the model9 from ref. [92], which gives the
contribution to the damping factor DFoG(k‖, z) from the velocity dispersion inside halos of
some characteristic mass. Ref. [91] found that CII is mostly hosted by halos with 1011 .
M/M� . 1012 at z ∼ 5. If we consider halos with M ≈ 1011.5h−1M�, we find that DFoG(j =
10) ≈ 0.9 and DFoG(j = 20) ≈ 0.75 at the relevant redshifts, which will not significantly
impact the signal to noise on these higher-j modes.

In the next subsection, we will present the specific S/N numbers for each survey we
have considered so far.

9In detail, we only consider the component of this model arising from the multi-streaming regime (which
we expect to be dominant over the contribution of bulk flows to DFoG at the relevant redshifts and scales).
This is given by

DFoG(k‖, z) = e
−k2‖σ

2
v,multi/H

2(z)
, (4.17)

where

σv,multi = a(z)−1σv,vir = 102.5 × 0.9 × a(z)−1∆
1/6
vir (z)

(
H(z)

H0

)1/3 (
M

1013h−1M�

)1/3

km/s , (4.18)

we have corrected a typo in the latter formula, and ∆vir(z) is given below eq. (4.9) of ref. [92].

– 34 –



J
C
A
P
0
7
(
2
0
1
8
)
0
4
6

4.4 Summary and prospects for cross-correlations

A useful way to collect the results of these forecasts is the compute the total signal to noise
on a measurement of the amplitude of the lensing potential power spectrum in each case:

(
S

N

)2

auto

= fsky

∑
L

2L+ 1

2

 CφφL

CφφL +N
(full,combined)
φφ (L)

2

. (4.19)

For this, we use the noise corresponding to the bias-hardened estimator, since, as we have
discussed, the auto spectrum that results from the regular estimator typically has large biases
from gravitational nonlinearity.

We also compute the signal to noise for a few example cross-correlations, denoted by X
in the following formula:(

S

N

)2

cross

= fsky

∑
L

(2L+1)

[
CκXL

]2[
CκXL

]2
+
[
CXXL +NXX(L)

] [
CκκL +N

(full,combined)
κκ (L)

] (4.20)

where NXX(L) is the noise power spectrum for X, and we have replaced φ with the conver-
gence κ(`) = (1/2)`2φ(`), more commonly seen in galaxy lensing. This allows us to write
any cross or auto spectrum we need, in the Limber approximation, as (e.g. [93])

CXYL =

∫
dz

χ(z)2

dχ

dz
WX(χ)W Y (χ)Pδ(L/χ(z); z) . (4.21)

For lensing of the CMB or a line intensity map located at a (mean) comoving radial distance
χs, the distance kernel W κ(χ) is

W κ(χ) =
3

2
ΩmH

2
0

χ

a(χ)

χs − χ
χs

. (4.22)

We consider cross-correlations with the following tracers:

1. X = g (galaxy clustering), with distance kernel

W g(χ) =
dz

dχ
n(z)b(χ) , (4.23)

where n(z) is the redshift distribution of galaxies, normalized such that
∫
dz n(z) = 1,

and b(χ) is the bias of the galaxy sample in question, assumed to be scale-independent.
We will focus on clustering as measured by LSST, for which n(z) is expected to have
the rough form [94]

n(z) ∝ z1.25 exp[−z/0.5] . (4.24)

For the sake of simplicity, we will not consider tomography of the galaxy distribution,
treating the entire galaxy sample as a single “bin” with the redshift distribution above.
Following ref. [95], we will assume the simple linear bias model b(χ) = 1 + z(χ), and
a mean angular galaxy density n̄ = 65 arcmin−2 for z < 4. The latter determines the
noise power spectrum for clustering, given by the Poisson expression Ngg(L) = n̄−1

with n̄ in sr−2.
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When cross-correlating with lensing of source fluctuations at zmin < z < zmax, we only
consider galaxies at z < zmin, reducing n̄ accordingly. With this restriction, the non-
bias-hardened lensing estimator can be used, since the long density modes picked up
by the quadratic estimator will not cross-correlate with galaxies at lower redshifts.

For cross-correlations with a single-dish IM survey, one could also consider the COS-
MOS photometric redshift sample [96], motivated by plans for the CCAT-prime CII
survey patch to overlap with a deep field similar to COSMOS. The redshift distribution

n(z) ∝ z1.25 exp
[
−(z/0.5)1.25

]
, (4.25)

provides a rough match to the redshift distributions shown in ref. [96] for different
magnitude bins. From the total number of objects (∼ 7.7× 105) with measured photo-
metric redshifts within the 2 deg2 COSMOS field, we compute a mean galaxy density of
n̄ ≈ 107 arcmin−2. We find that the S/N for cross-correlations with COSMOS galaxies
would be within 10% of that for LSST galaxies, if the COSMOS field was the same size
as the IM survey, but the small size (2 deg2, versus 16 deg2 for the proposed CCAT-
prime CII survey) will limit our ability to measure the cross power spectrum. For this
reason, we will only present numbers for LSST cross-correlations.

2. X = γ (cosmic shear; technically another measurement of the convergence κ, but we
will use X = γ to differentiate from lensing of intensity maps), with distance kernel

W γ(χ) =
3

2
ΩmH

2
0

χ

a(χ)

∫ χ∗

0
dχ′

dz

dχ′
n(z)

χ′ − χ
χ′

, (4.26)

where n(z) is the normalized redshift distribution of source galaxies. We will again
use the n(z) functions from above, considering a single redshift bin spanning the entire
range of each survey. The noise power spectrum is given by the shape noise term
Nγγ(L) = σ2

ε n̄
−1, where σε = 0.27 is the intrinsic noise per ellipticity component of the

observed galaxy shapes. Following ref. [97], we use n̄ = 40 arcmin−2 for the number
density of LSST galaxies with well-measured shapes. As for the galaxy clustering cross-
correlations, we will only use galaxies for cosmic shear located at lower redshifts than
the source intensity field we use for lensing reconstruction, enabling the use of the
non-bias-hardened lensing estimator.

In table 1, we show our forecasts for the total signal to noise on the auto or cross spectra
indicated in each column, for the 21cm surveys we have considered in sections 4.1 and 4.2,
assuming fsky ≈ 6.5 × 10−4 (27 deg2) for the SKA1-Low reionization survey and fsky = 0.5
for CHIME and HIRAX. To obtain these numbers, we first perform forecasts for a selection
of redshift bands with widths listed in table 1 (the results for these individual bands can be
found in appendix E). We then interpolate these results using a cubic spline, calculate the
mean redshifts of adjacent bands that completely cover the survey’s redshift range, evaluate
the signal to noise for each band, and sum the results in quadrature. The lower redshift for
CHIME and HIRAX indicates where the 21cm fluctuations become noise-dominated.

Even under our optimistic assumptions, the lensing auto spectrum can be detected
weakly at best by the SKA survey and not at all by CHIME or HIRAX, using the estimator
we have investigated. However, we find much higher signal to noise on the cross-correlations
we have considered, for each of SKA, CHIME, and HIRAX (with the obvious caveat that
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S/N on lensing power spectra for 21cm surveys

z width of each band fsky 〈κκ〉 〈κgLSST〉 〈κγLSST〉
[MHz]

SKA1-Low 6 < z < 14 5 6.5× 10−4 3.6 26 13

CHIME 1.1 < z < 2.5 25 0.5 0.25 34 27

HIRAX 1.35 < z < 2.5 25 0.5 0.93 45 34

Table 1. Total signal to noise for a detection of either the lensing auto power spectrum (〈κκ〉) or the
cross spectrum between lensing and LSST galaxy clustering (〈κgLSST〉) or cosmic shear (〈κγLSST〉),
for the surveys from sections 4.1 and 4.2 (see those sections for more details about the specifications
we assume). In reality, lack of overlap between CHIME and LSST prevents cross-correlation, but we
still perform forecasts in order to have an apples-to-apples comparison with HIRAX. For 〈κκ〉, we
use the noise per φ mode from the bias-hardened lensing estimator, while for the cross-correlations we
use the non-bias-hardened noise, fixing the redshift range of the low-z tracer such that gravitational
effects in the source intensity field do not correlate with the tracer. A detection of the lensing auto
spectrum will be weak at best in the SKA survey and impossible for CHIME and HIRAX. For all
surveys, significant measurements of each cross-correlation may be possible, provided that systematics
can be controlled at the appropriate level.

CHIME cannot practically be cross-correlated with LSST due to lack of overlap, but our fore-
casts for that case would apply to an LSST-like northern survey). For all cross-correlations
we consider, the lensing reconstruction noise (including non-Gaussian contributions) is the
limiting factor in the overall signal to noise: for example, comparable 〈κg〉 results could be
achieved with a galaxy survey with a number density 20 times lower than LSST (but still
covering half the sky).

We again remind the reader that these numbers represent the absolute best-case scenario
for application of the lensing estimators in this paper, at the perturbative order we have
computed; inevitable real-world systematics will likely degrade these numbers by a factor
of a few at least. However, if these surveys are successful at detecting 21cm fluctuations at
high significance, the forecasts in table 1 motivate an investigation of lensing reconstruction
using those measurements. This would further enhance the cross-correlation science possible
between low-redshift 21cm and photometric surveys, adding to other existing applications
such as calibration of photometric redshift distributions [98].

For SKA1-Low, the S/N that we compute for CφφL is a factor of ∼3 lower than it would be
if gravitational nonlinearities in the source field were ignored, while for CHIME and HIRAX,
the multiplier is at least a factor of 5. This reaffirms that these effects should be included in
any lensing reconstruction forecast at these redshifts. Note that when we neglect nonlinear-
ities, we find signal to noise values that are consistent with previous forecasts, e.g. ref. [99].

As noted in section 4.3, the amplitudes of an intensity map’s signal and noise power
spectra for our imagined single-dish survey are very uncertain. In figure 12, we incorporate
this uncertainty by plotting the lensing signal to noise as a function of jmax. We have used a
fiducial fsky of 3.9× 10−4, corresponding to 16 deg2. Under this assumption, we once again
find that a strong detection of the lensing auto spectrum within a single band will not be
possible, despite the fact that for the highest angular resolutions, bias-hardening actually
decreases the noise on CφφL by as much as 70%.

On the other hand, a cross-correlation of lensing from z ∼ 6 with galaxy clustering
from a large galaxy survey looks more promising, for both the 6m- and 10m-dish cases, with
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Figure 12. As table 1, but computed as a function of jmax for our imagined single-dish intensity
mapping survey from section 4.3, based on the CII survey recommended in ref. [85]. The 6m-dish
version of this survey is planned for the CCAT-prime telescope, but we also forecast for a 10m dish.
Higher values of jmax are achievable if the source intensity field is detected with lower noise. At the
fiducial fsky of 3.9 × 10−4 (16 deg2), the lensing auto spectrum will measured at low significance at
best, while cross-correlations with LSST (or COSMOS, not shown) galaxy clustering or cosmic shear
show better prospects for a strong detection. Increasing fsky would boost the significance on all auto
and cross spectra by (fsky/f

fid
sky)1/2, potentially bringing them within reach of strong detections.

potential S/N & 10, and likewise for the 10m dish using lensing at z ∼ 8. A cross correlation
with cosmic shear from lower-redshift galaxies looks slightly less promising. However, as
indicated by the figure’s y-axis label, the signal to noise on any of these measurements scales

as f
1/2
sky . This implies that even increasing fsky by a factor of 4 could potentially bring a

detection of the auto spectrum within reach. Furthermore, even with our fiducial fsky, we
found in figure 11 that it may be possible to construct lensing maps that are signal-dominated
over a sizable range of multipoles, and these maps would likely be widely useful for cross-
correlation science at small scales.

A first detection of lensing of a non-21cm line intensity map would represent a new
and exciting science case for line intensity surveys currently being planned, and would nicely
complement the more standard motivations for such surveys, which are typically related to
star formation and galaxy evolution.

5 Design considerations for future intensity mapping experiments

With several intensity mapping surveys underway or in various stages of planning, one can
ask which characteristics of this type of survey are most important for lensing reconstruc-
tion. We will return our focus to the case of 21cm interferometers, for which a wealth of
cross-correlation science will be available if a robust lensing analysis can be performed. For
concreteness, we will consider various extensions of HIRAX, taking the “base” configuration
to be that described in section 4.2, but with redshift range extended to 2 < z < 6. One can
imagine improving various properties of the experiment by a factor of 4: decreasing the sky
area (which may or may not be a net improvement, due to a tradeoff between lower noise
for fixed observing time and a smaller number of observed modes), increasing the observing
time, using bigger dishes, or using more dishes.

In table 2, we repeat our previous computations of total signal to noise on lensing
auto and cross spectra, but for each version of “SuperHIRAX” mentioned above, and for
observations in three representative redshift bands. We also show an effective derived `max
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S/N on lensing power spectra for SuperHIRAX

z Experiment `max (derived) 〈κκ〉 〈κgLSST〉 〈κγLSST〉
2 < z < 2.5 Base 800 2.3 36 27

0.25× fsky 1100 1.7 24 17

4× t0 1100 3.4 48 34

2×Ddish 1100 3.5 46 33

4×Ndishes 1600 7.3 60 49

3.5 < z < 4 Base 500 0.3 19 14

0.25× fsky 800 0.4 19 14

4× t0 800 0.8 38 28

2×Ddish 700 0.9 29 22

4×Ndishes 1100 3.3 61 43

5.5 < z < 6 Base 300 <0.1 5.5 4.3

0.25× fsky 500 <0.1 7.1 5.4

4× t0 500 0.1 14 11

2×Ddish 400 0.1 9.5 7.2

4×Ndishes 800 0.6 25 18

Table 2. As table 1, but now considering different extensions of HIRAX capable of making mea-
surements over 2 < z < 6. The “base” configuration is described in section 4.2. The `max column
states the ` value at which the 21cm signal and noise power spectra cross for each experiment. The
largest improvements are to be had by increasing the number of dishes (with other survey specifica-
tions fixed), since this adds longer baselines that are more sensitive to lensing, and also decreases the
noise on shorter baselines. For a fixed total collecting area, decreasing the dish size and increasing
the number of dishes would also yield large gains.

for each experiment, determined from where the 21cm signal and noise power spectra cross
in each case. We find that the largest gains in S/N are to be had by increasing `max, which
both increases the number of small-scale modes available for use in the lensing reconstruction,
and improves our ability to distinguish between lensing- and gravity-induced mode-couplings,
lessening the increase in noise per mode that comes from using a bias-hardened estimator.

A few other trends are also visible in table 2. At fixed `max, increasing the observing time
and decreasing fsky affect the lensing reconstruction noise in the same way [see eq. (4.13)],
but decreasing fsky also increases sample variance in the power spectrum estimate, decreasing
the overall detection significance. (Decreasing fsky also increases `min in lensing reconstruc-
tion, but this has negligible impact on the results if `min � `max.) Meanwhile, increasing the
observation time by 4 or the dish diameter by 2 give similar results: the former lowers the
thermal noise on all scales, in particular causing a few more small-scale modes to become
signal-dominated, while the latter allows access to longer baselines (again translating into
more small-scale modes) while increasing the noise on large-scale modes (which are negligi-
bly important for lensing reconstruction). Ultimately, simply increasing the number of dishes
(and utilizing all possible correlations between them, which will come at non-negligible com-
putational cost) would allow for the largest improvement in lensing signal-to-noise. If the
total collecting area is held fixed, decreasing the dish size while increasing the number of
dishes would be the best direction to pursue, and would also benefit other science cases that
come from measuring the 21cm fluctuations themselves.
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6 Conclusions

In this paper, we have investigated several aspects of how to measure the gravitational lensing
of line intensity maps. These maps will generally have angular resolution similar to maps of
the CMB, but will be fully 3-dimensional, by virtue of measuring the spatial fluctuations of
a redshifted line whose rest frequency is known. Unlike for the CMB, however, the statistics
of these maps will generally be non-Gaussian, and these non-Gaussianities can affect the
fidelity of the reconstructed lensing maps. We have particularly focused on the impact of
gravitational nonlinearities on the measured intensity field, using perturbation theory to
quantify how this impact varies with source redshift and angular resolution.

Even for measurements of the epoch of reionization, gravitational mode-couplings can
significantly affect lensing reconstruction for some planned 21cm surveys, because their angu-
lar resolution will be sufficient to probe nonlinearities in the underlying density field (indepen-
dently of the details of reionization itself). In some cases, our use of low-order perturbation
theory imposes a restriction on the range of validity of our calculations, but allows us to
retain analytical control of our predictions, and also to devise a “bias-hardening” technique
to remove the leading-order bias for reconstructed lensing maps and their power spectra. We
have identified two types of gravitational contributions that appear when performing lensing
reconstruction. The first originates from the direct response of the small-scale density field
to a long-wavelength density mode; we have shown how one could use similar techniques to
reconstruct this long-wavelength mode from the same survey and then remove this contri-
bution from a reconstructed lensing map itself. The second contribution cannot be removed
with this technique, and we show how its magnitude is in fact amplified when one performs
the bias-hardening procedure.

We have performed simplistic forecasts for a selection of 21cm surveys: a 27deg2 reioniza-
tion survey imagined for phase one of SKA-Low, and lower-redshift observations by CHIME
and HIRAX. In all cases, we find that a robust detection of the auto spectrum of the cor-
responding lensing potential will be out of reach. This conclusion is strongly affected by
gravitational nonlinearities: ignoring these effects results in a forecast signal to noise that
is higher by a factor ∼3 for SKA-Low, and by a larger factor for CHIME and HIRAX,
even when including bias-hardening. On the other hand, it appears that cross-correlations
between reconstructed lensing maps and galaxy clustering or galaxy lensing from a large
photometric survey (such as LSST, or even something less dense but with large sky cov-
erage) may be within reach. We have also investigated the abilities of a single-dish CII
survey, such as planned for the CCAT-prime observatory, and have reached similar con-
clusions: the lensing auto spectrum will be challenging, but cross-correlations with other
low-redshift tracers merit further study. Higher detection significance may be possible if
more strongly nonlinear scales can be used, either by extending our calculation to higher
order in perturbation theory, or by using other lensing estimators calibrated on simulations
(e.g. [26, 27]).

In addition, we have performed forecasts for various extensions of HIRAX, as a quanti-
tative check on our intuition about how various survey properties affect our ability to detect
lensing. We have found that the single largest improvement arises from simply adding more
dishes and utilizing all correlations between them: the addition of longer baselines increases
`max and therefore the number of small-scale modes available, while the addition of more re-
dundant short baselines should reduce the noise on measurements of modes already accessible
within the base HIRAX configuration.
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In this work, we have focused exclusively on using intensity measurements for lensing
reconstruction. However, it is well-known for the CMB that measurements of polarization also
contain valuable information about lensing, and indeed, the precision of future CMB lensing
measurements will be driven largely by this information (e.g. [4]). Therefore, as mentioned
briefly by ref. [19], one could also ask about using the polarization of line intensity maps in
this way. For 21cm surveys, polarization will be generated by the quadrupole seen by remote
scatterers during reionization, in the same way as in the CMB [100]. It has been pointed
out that this polarization will undergo large amounts of Faraday rotation at the relevant
frequencies, caused by galactic and extragalactic magnetic fields [101], and there will also be
large polarized foregrounds that will further obscure the signal of interest. For other lines,
it may be interesting to investigate the feasibility of measuring polarization and the lensing
thereof, since, for example, Faraday rotation will generally be much less of an issue at the
corresponding (much shorter) wavelengths. We leave this for future work.

We conclude by mentioning several avenues which would be useful to pursue in fu-
ture studies:

• The gravitational mode-couplings discussed in this work will also affect attempts to
reconstruct the effect of lensing on the Lyman-α forecast, studied recently in refs. [8, 9].
It would be interesting to quantify these effects.

• Tracers of the density field are typically treated using a bias expansion on quasi-linear
scales (e.g. [102]), and line intensity maps will typically be measuring the aggregate
emission from these tracers. Nonlinear terms in the bias expansion will induce mode-
couplings similar to those we have discussed, and these can be explored in much the
same way as we have done. Weakly nonlinear effects from redshift-space distortions
can likewise be explored using perturbation theory, albeit with the extra complication
that effective field theory counterterms will be needed in even the tree-level four-point
function [103–105]. At higher redshifts, the topology of reionization will need to be
modeled in order to design the appropriate filters in the lensing estimator. Recent
studies of simulations have indicated that a bias expansion may be valid even dur-
ing reionization [106], which would simplify the modeling somewhat, but in any case,
further study is required.

• At sufficiently small scales, the expansion in ∇φ used to derive the quadratic lensing es-
timators breaks down, but likelihood-based methods [107] or other techniques (e.g. [31])
can circumvent this limitation. It would be useful to precisely determine the error aris-
ing from higher-order corrections in ∇φ for different intensity mapping setups, and
assess the performance of the available alternative methods for lensing reconstruction
in these setups.

• Our investigation in section 3.2 of reconstructing long-wavelength modes of the density
field supports findings elsewhere in the literature (e.g. [39–41]) that this could be a very
promising technique to apply to both low- and high-redshift surveys. This certainly
warrants continued study.

• As mentioned in the introduction, curl modes of lensing (as opposed to the familiar
gradient modes sourced by scalar perturbations at linear order) have been considered
as a probe of gravitational waves (e.g. [35, 36, 108]). However, similar to the mode-
couplings studied here, tidal effects would induce mode-couplings that can mimic the

– 41 –



J
C
A
P
0
7
(
2
0
1
8
)
0
4
6

curl lensing signal. Decaying gravitational waves induce a curl lensing signal that is
relatively small and, similar to the gravitational wave signal itself, a steep function
of scale [109]. At accessible scales, tidal effects can therefore potentially be much
more important and lead to a “fossil” imprint on the large scale structure that does not
decay [110–112]. It is possible that bias-hardening techniques can be applied to separate
the tidal effects from the lensing effects for curl modes, and we hope to explore this in
future work.

Acknowledgments

We wish to thank Marcelo Alvarez, Philippe Berger, Patrick Breysse, Emanuele Castorina,
Anthony Challinor, Simone Ferraro, Alex Hall, Viswesh Marthi, Kavilan Moodley, Yuuki
Omori, Ue-Li Pen, Emmanuel Schaan, Fabian Schmidt, Uroš Seljak, Richard Shaw, and Anže
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A Perturbation theory kernels up to third order

In this work, we use make use of large-scale structure perturbation theory up to third order in
the linear overdensity, neglecting effective field theory corrections because they do not enter

in tree-level computations. The symmetrized second- and third-order density kernels F
(s)
2 and

F
(s)
3 can be obtained from recurrence relations found e.g. in ref. [47], but for convenience, we

list them below.
The symmetrized second-order kernel is given directly by.

F
(s)
2 (k1,k2) =

5

7
+

1

2

(
k1

k2
+
k2

k1

)
k̂1 · k̂2 +

2

7

(
k̂1 · k̂2

)2
, (A.1)

where k̂i ≡ ki/ki. The unsymmetrized third-order kernel F3 is given by

F3(k1,k2,k3) =
1

18
α(k1,k2 + k3) [5α(k2,k3) + 2β(k2,k3)]

+
1

63
β(k1,k2 + k3) (3α(k2,k3) + 4β(k2,k3))

+
1

126
[3α(k1,k2) + 4β(k1,k2)] [7α(k1 + k2,k3) + 2β(k1 + k2,k3)] , (A.2)

where

α(k1,k2) ≡ k1 · (k1 + k2)

k2
1

, β(k1,k2) ≡ k1 · k2 |k1 + k2|2

2k2
1k

2
2

; (A.3)

the symmetrized kernel F
(s)
3 is then obtained by symmetrizing F3(k1,k2,k3) over permuta-

tions of its arguments.
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Figure 13. As figure 2, but comparing the lensing potential power spectrum to the N
(nG,φ,c)
φφ term

(an integral over CφφL and other factors, analogous to N (1) from CMB lensing). The high-L downturns
seen in some panels are the result of chance cancellations in the integrand at certain values of `max

and k‖; generically, N
(nG,φ,c)
φφ scales like L−4. This term is generally much smaller than the non-

Gaussian contributions from gravity investigated in the main text of this work, and does not correlate
lensing estimations using modes with different k‖ values. Thus, it is safe to neglect it in the forecasts
we perform.

B Contribution from “N (1) bias”

In section 2.3.3, we find that the variance of the φ̂ estimator (i.e. 〈φ̂φ̂〉) contains a term
analogous to what is called “N (1) bias” in CMB lensing [60]. This term involves an integral

over CφφL and several factors of the source power spectrum. In our conventions, we denote

this term by N
(nG,φ,c)
XY , and we find from the derivation in appendix C that it is given by

N
(nG,φ,c)
φφ (L, k‖) ≡

∫
`1

∫
`2

gφ(`1,L− `1, k‖)gφ(`2,L− `2, k‖)C
φφ
|`1−`2|

× fφ(`1,−`2, k‖, k‖)fφ(L− `1,−L+ `2, k‖, k‖) . (B.1)

In figure 13, we plot this term at the same redshifts and k‖ values as in figure 2, along with

CφφL . We find that, like N
(G)
φφ , this term scales roughly like L−4 and `−2

max. (The high-L
downturns seen in some panels in figure 13 are a result of chance cancellations in the integral
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at specific `max and k‖ values — for other k‖ values than what we have plotted, we find an
almost exact L−4 scaling.)

At fixed k‖, figure 13 shows that this term is generally much smaller than the other non-
Gaussian contributions plotted in figure 2, except possibly at higher L. Furthermore, unlike

the other non-Gaussian contributions explored in this work, N
(nG,φ,c)
φφ does not correlate φ

estimators evaluated at different values of k‖; in other words,〈
φ̂(L, k‖1)φ̂∗(L, k‖2)

〉
⊃ δK

k‖1,k‖2
N

(nG,φ,c)
XY (L, k‖1) . (B.2)

This implies that when the lensing estimators for different k‖ values are optimally combined,
as in eqs. (2.42) and (2.43), the effect of this term will effectively average down like j−1

max,
rendering it far subdominant to the contributions from gravitational mode-couplings. For
high-precision observations, the bias incurred by this term will need to be modeled and
subtracted away, but for the purposes of the forecasts we perform here, it is safe to neglect it.

C Derivation of contributions to variance of lensing estimator

In this appendix, we derive the various non-Gaussian contributions to the covariance of two
estimators X̂ and Ŷ where X,Y ∈ {φ, δ}, given earlier in eqs. (2.37) to (2.39). This involves
classifying the terms appearing in the four-point function of Ilen at different orders in φ and
δ1, and then applying the double filter from eq. (2.29) to each term. We will make use of the
following shorthand:

P [`, k] ≡ Pδ1

(√
`2

χ2
+ k2

)
, (`i, k) ≡ (`i1/χ, `i2/χ, k) . (C.1)

C.1 O(φ2δ41) terms

We begin with terms that arise from picking two factors of Ilen in the relevant four-point
function and expanding each of them to O(φ1δ1

1), using

Ilen(`, k‖) ⊃ bL−1χ−2δ1(`/χ, k‖)− bL−1χ−2

∫
`′
`′ · (`− `′)φ(`− `′)δ1(`′/χ, k‖) . (C.2)

The four δ1 factors must contract together using Wick’s theorem, while the two φ factors must
lie in distinct Wick contractions of the δ1 factors, or else they contribute to the disconnected

four-point function, which has already been fully accounted for by the N
(G)
XY term. Thus, we

can derive the relevant terms starting with the following grouping of factors in the four-point
function,〈

Ilen(`1,k‖1)Ilen(L1−`1,−k‖1)Ilen(−`2,−k‖2)Ilen(−L2+`2,k‖2)
〉

c

⊃
〈〈
Ilen(`1,k‖1)Ilen(L1−`1,−k‖1)

〉
δ

〈
Ilen(−`2,−k‖2)Ilen(−L2+`2,k‖2)

〉
δ

〉
φ

+
〈〈
Ilen(`1,k‖1)Ilen(−`2,−k‖2)

〉
δ

〈
Ilen(L1−`1,−k‖1)Ilen(−L2+`2,k‖2)

〉
δ

〉
φ

+
〈〈
Ilen(`1,k‖1)Ilen(−L2+`2,k‖2)

〉
δ

〈
Ilen(L1−`1,−k‖1)Ilen(−`2,−k‖2)

〉
δ

〉
φ
, (C.3)

substituting the first and second terms of eq. (C.2) for either Ilen in each 〈·〉δ grouping, and
evaluating the relevant contractions over δ1 and φ. Since the double integral with gX(`1,L1−
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`1, k‖1)gY (`2,L2 − `2, k‖2) from eq. (2.29) is invariant under `i ↔ Li − `i, the last two lines
above are equal except for the substitution k‖2 ↔ −k‖2.

In the first line of eq. (C.3), all four choices of where to put the two φ insertions are
equivalent by changes of variables in eq. (2.29) and by invariance of gX under k‖ → −k‖. We
can evaluate each of the two 〈·〉δ groupings separately first:

2
〈
Ilen(`1, k‖1)Ilen(L1 − `1,−k‖1)

〉
δ

→ 2

〈
−b2L−2χ−4

∫
`′
δ1(`1/χ, k‖1)`′ · (L1 − `1 − `′)φ(L1 − `1 − `′)δ1(`′/χ,−k‖1)

〉
δ

= −2b2L−2χ−4

∫
`′
`′ · (L1 − `1 − `′)φ(L1 − `1 − `′)Lχ2(2π)2δD(`1 + `′)P [`1, k‖1]

= 2`1 ·L1φ(L1)C`1(k‖1)

= L1 ·
[
`1C`1(k‖1) + (L1 − `1)C|L1−`1|(k‖1)

]
φ(L1)

= fφ(`1,L1 − `1, k‖1, k‖1)φ(L1) , (C.4)

where in the fourth we used the definition of C` from eq. (2.2), also absorbing b2 as mentioned
in the main text, and in the fourth equality we used invariance of the gXgY integral under
`i ↔ Li− `i to symmetrize the expression, to match the definition of fφ in eq. (2.24). Doing
the same for the second 〈·〉δ grouping, we can write〈〈

Ilen(`1, k‖1)Ilen(L1 − `1,−k‖1)
〉
δ

〈
Ilen(−`2,−k‖2)Ilen(−L2 + `2, k‖2)

〉
δ

〉
φ

→ fφ(`1,L1 − `1, k‖1, k‖1)fφ(−`2,−L2 + `2, k‖2, k‖2) 〈φ(L1)φ(−L2)〉φ
= (2π)2δD(L1 −L2)CφφL1

fφ(`1,L1 − `1, k‖1, k‖1)fφ(−`2,−L2 + `2, k‖2, k‖2) . (C.5)

Moving on to the second line of eq. (C.3), the first 〈·〉δ grouping can be evaluated like so:〈
Ilen(`1, k‖1)Ilen(−`2,−k‖2)

〉
δ

→
〈
−b2L−2χ−4

∫
`′
δ1(`1/χ, k‖1)`′ · (−`2 − `′)φ(−`2 − `′)δ1(`′/χ,−k‖2)

〉
δ

+

〈
−b2L−2χ−4

∫
`′
`′ · (`1 − `′)φ(`1 − `′)δ1(`′/χ, k‖1)δ1(−`2/χ,−k‖2)

〉
δ

= −b2L−2χ−4

∫
`′
`′ · (−`2 − `′)φ(−`2 − `′)χ2(2π)2δD(`1 + `′)LδK

k‖1,k‖2
P [`1, k‖1]

− b2L−2χ−4

∫
`′
`′ · (`1 − `′)φ(`1 − `′)χ2(2π)2δD(−`2 + `′)LδK

k‖1,k‖2
P [`2, k‖2]

= (`1 − `2) ·
[
`1C`1(k‖1)− `2C`2(k‖2)

]
δK
k‖1,k‖2

φ(`1 − `2)

= fφ(`1,−`2, k‖1, k‖2)δK
k‖1,k‖2

φ(`1 − `2) , (C.6)

while the second grouping can be similarly evaluated as〈
Ilen(L1 − `1,−k‖1)Ilen(−L2 + `2, k‖2)

〉
δ

= fφ(L1 − `1,−L2 + `2, k‖1, k‖2)δK
k‖1,k‖2

φ(L1 −L2 − `1 + `2) , (C.7)
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leading to〈〈
Ilen(`1,k‖1)Ilen(−`2,−k‖2)

〉
δ

〈
Ilen(L1−`1,−k‖1)Ilen(−L2+`2,k‖2)

〉
δ

〉
φ

(C.8)

→ fφ(`1,−`2,k‖1,k‖2)fφ(L1−`1,−L2+`2,k‖1,k‖2)δK
k‖1,k‖2

〈φ(`1−`2)φ(L1−L2−`1+`2)〉φ
= (2π)2δD(L1−L2)Cφφ|`1−`2| δ

K
k‖1,k‖2

fφ(`1,−`2,k‖1,k‖2)fφ(L1−`1,−L2+`2,k‖1,k‖2) .

The third line of eq. (C.3) will be the same as this, but with the k‖2 → −k‖2. Since we always

take k‖1, k‖2 > 0, the Kronecker delta δK
k‖1,−k‖2 will then cause this term to vanish.

Putting everything together, we end up with〈
Ilen(`1, k‖1)Ilen(L1 − `1,−k‖1)Ilen(−`2,−k‖2)Ilen(−L2 + `2, k‖2)

〉
c

⊃ (2π)2δD(L1 −L2)
[
CφφL1

fφ(`1,L1 − `1, k‖1, k‖1)fφ(−`2,−L2 + `2, k‖2, k‖2)

+ δK
k‖1,k‖2

Cφφ|`1−`2|fφ(`1,−`2, k‖1, k‖2)fφ(L1 − `1,−L2 + `2, k‖1, k‖2)
]
. (C.9)

Plugging this into the integral in eq. (2.29), we find

CovnG

[
X̂(L, k‖1), Ŷ ∗(L, k‖2)

]
⊃ N (nG,φ)

XY (L, k‖1, k‖2) + δK
k‖1,k‖2

N
(nG,φ,c)
XY (L, k‖1) , (C.10)

where

N
(nG,φ)
XY (L, k‖1, k‖2) =

N
(G)
XX(L, k‖1)N

(G)
Y Y (L, k‖2)

N
(G)
Xφ (L, k‖1)N

(G)
Y φ (L, k‖2)

CφφL (C.11)

and

N
(nG,φ,c)
XY (L, k‖) ≡

∫
`1

∫
`2

gX(`1,L− `1, k‖)gY (`2,L− `2, k‖)C
φφ
|`1−`2|

× fφ(`1,−`2, k‖, k‖)fφ(L− `1,−L+ `2, k‖, k‖) . (C.12)

As mentioned in the main text, eq. (C.12) is analogous to what is commonly called N
(1)
L in

CMB lensing [60]. It will be far subdominant to the other non-Gaussian terms we consider,
and therefore we have omitted it in eq. (2.37) and in our numerical results, but have included
it here for completeness. As also mentioned above, there are other O(φ2δ4

1) terms that will
contribute to the disconnected four-point function of Ilen. Such terms, and higher-order terms
that also contribute to the disconnected four-point function, will automatically be included

in N
(G)
XY provided that the Ctot

` (k‖) or Pδ functions used in the filters are the nonlinear, lensed
versions of the respective power spectra.

C.2 O(φ0δ61) terms with δ2

This contribution arises from terms with two factors of F
(s)
2 when the following expansion is

inserted into the Ilen four-point function:

Ilen(`, k‖) ⊃ bL−1χ−2δ1(`/χ, k‖) + bL−1χ−2

∫
q
F

(s)
2 (q,k − q)δ1(q)δ1(k − q)

∣∣∣∣
k=(`/χ,k‖)

.

(C.13)
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These terms are easiest to identify if we start with the O(F 2
2 ) terms in the tree-level density

trispectrum T , defined by

〈δ(k1)δ(k2)δ(k3)δ(k4)〉 = (2π)3δD(k1 + k2 + k3 + k4)T (k1,k2,k3,k4) . (C.14)

If we use shorthand notation where i represents a 3d wavevector ki, ij represents ki +kj , Pi

represents P (ki), and F represents F
(s)
2 , the relevant terms in T (k1,k2,k3,k4) ≡ T (1, 2, 3, 4)

are (e.g. [57])

T (1, 2, 3, 4) ⊃ 4 [P1P2 (F (−1, 13)F (−2, 24)P13 + F (−2, 23)F (−1, 14)P23)

+ P1P3 (F (−1, 12)F (−3, 34)P12 + F (−3, 32)F (−1, 14)P32)

+ P1P4 (F (−1, 13)F (−4, 42)P13 + F (−4, 43)F (−1, 12)P43)

+ P2P3 (F (−2, 21)F (−3, 34)P21 + F (−3, 31)F (−2, 24)P31)

+ P2P4 (F (−2, 21)F (−4, 43)P21 + F (−4, 41)F (−2, 23)P41)

+P3P4 (F (−3, 31)F (−4, 42)P31 + F (−4, 41)F (−3, 32)P41)] . (C.15)

In the trispectrum present in eq. (2.29), the ki vectors should be substituted with

1→ (`1, k‖1) , 2→ (L1 − `1,−k‖1) , 3→ (−`2,−k‖2) , 4→ (−L2 + `2, k‖2) , (C.16)

using the notation from eq. (C.1). We can these vector substitutions to identify three groups
of terms that will each simplify together:

1. Terms with P12 or P34: since P12 = P [L1, 0] and P34 = P [−L2, 0], and the trispec-
trum will come with an overall factor of δD(L1 − L2), these terms naturally group
together:

4P [L1,0]×[P1P3F (−1,12)F (−3,34)+P1P4F (−4,43)F (−1,12)

+P2P3F (−2,21)F (−3,34)+P2P4F (−2,21)F (−4,43)]

= 4P [L1,0]×[F (−1,12)P1+F (−2,21)P2]×[F (−3,34)P3+F (−4,43)P4]

= 4P [L1,0]

×
[
F (−(`1,k‖1),(L1,0))P [`1,k‖1]+F (−(L1−`1,−k‖1),(L1,0))P [L1−`1,−k‖1]

]
×
[
F (−(−`2,−k‖2),(−L2,0))P [`2,k‖2]

+F (−(−L2+`2,k‖2),(−L2,0))P [−L2+`2,k‖2]
]
. (C.17)

Recalling the definition of fδ from eq. (2.25), we can write this expression as

L4χ8P [L1, 0]fδ(`1,L1 − `1, k‖1,−k‖1)fδ(−`2,−L2 + `2,−k‖2, k‖2) . (C.18)

Finally, fδ is invariant under parity, so we can write

L4χ8P [L1, 0]fδ(`1,L1 − `1, k‖1,−k‖1)fδ(`2,L2 − `2, k‖2,−k‖2) . (C.19)
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2. Terms with P13 or P24: since P13 = P24 = P [`1 − `2, k‖1 − k‖2], we can group these
terms as follows:

4P [`1−`2,k‖1−k‖2]×[P1P2F (−1,13)F (−2,24)+P1P4F (−1,13)F (−4,42)

+P2P3F (−3,31)F (−2,24)+P3P4F (−3,31)F (−4,42)]

= 4P [`1−`2,k‖1−k‖2]×[F (−1,13)P1+F (−3,31)P3]×[F (−2,24)P2+F (−4,42)P4]

= 4P [`1−`2,k‖1−k‖2]

×
[
F (−(`1,k‖1),(`1−`2,k‖1−k‖2))P [`1,k‖1]

+F (−(−`2,−k‖2),(`1−`2,k‖1−k‖2))P [−`2,−k‖2]
]

×
[
F (−(L1−`1,−k‖1),(−`1+`2,−k‖1+k‖2))P [L1−`1,k‖1]

+F (−(−L2+`2,k‖2),(−`1+`2,−k‖1+k‖2))P [−L2+`2,k‖2]
]

=L4χ8P [`1−`2,k‖1−k‖2]fδ(`1,−`2,k‖1,−k‖2)fδ(L1−`1,−L2+`2,−k‖1,k‖2) . (C.20)

3. Terms with P14 or P13: both P14 and P23 are equal to P [L1 − `1 − `2, k‖1 + k‖2],
and grouping the corresponding terms together, we get

4P [L1−`1−`2,k‖1+k‖2]×[P1P2F (−2,23)F (−1,14)+P1P3F (−3,32)F (−1,14)

+P2P4F (−4,41)F (−2,23)+P3P4F (−4,41)F (−3,32)]

= 4P [L1−`1−`2,k‖1+k‖2]×[F (−1,14)P1+F (−4,41)P4]×[F (−2,23)P2+F (−3,32)P3]

= 4P [L1−`1−`2,k‖1+k‖2]

×
[
F (−(`1,k‖1),(−L2+`1+`2,k‖1+k‖2))P [`1,k‖1]

+F (−(−L2+`2,k‖2),(−L2+`1+`2,k‖1+k‖2))P [−L2+`2,k‖2]
]

×
[
F (−(L1−`1,−k‖1),(L1−`1−`2,−k‖1−k‖2))P [L1−`1,−k‖1]

+F (−(−`2,−k‖2),(L1−`1−`2,−k‖1−k‖2))P [−`2,k‖2]
]

=L4χ8P [L1−`1−`2,k‖1+k‖2]fδ(`1,−L2+`2,k‖1,k‖2)fδ(L1−`1,−`2,−k‖1,−k‖2) .

(C.21)

Under the gXgY integral, we can change variables from `1 to L1 − `1 to get

L4χ8P [`1− `2, k‖1 + k‖2]fδ(L1− `1,−L2 + `2, k‖1, k‖2)fδ(`1,−`2,−k‖1,−k‖2) . (C.22)

So far, we have manipulated different terms appearing in the density trispectrum T .
We can relate these to the four-point function of Ilen via〈

Ilen(`1, k‖1)Ilen(L1 − `1,−k‖1)Ilen(−`2,−k‖2)Ilen(−L2 + `2, k‖2)
〉

c

= b4L−4χ−8
〈
δ(`1/χ, k‖1)δ([L1 − `1]/χ,−k‖1)δ(−`2/χ,−k‖2)δ([−L2 + `2]/χ, k‖2)

〉
c

= b4L−4χ−8(2π)2δD([L1 −L2]/χ)L × T (· · · )
⊃ χ−6L−3(2π)2δD(L1 −L2)

× L4χ8
[
P [L1, 0]fδ(`1,L1 − `1, k‖1,−k‖1)fδ(`2,L2 − `2, k‖2,−k‖2)

+
{
P [`1 − `2, k‖1 − k‖2]fδ(`1,−`2, k‖1,−k‖2)fδ(L1 − `1,−L2 + `2,−k‖1, k‖2)

+
[
k‖1 ↔ −k‖1

]}]
. (C.23)
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When inserted into the integral in eq. (2.29) with X = Y = φ, the first term above will yield

the P (L/χ) term from eq. (2.35), while the other two terms are analogous to the N
(nG,φ,c)
XY

term from eq. (C.12), but will have much larger magnitude.

In summary, at O(φ0δ6
1), the terms with two factors of F

(s)
2 contribute to the estimator

covariance as

CovnG

[
X̂(L, k‖1), Ŷ ∗(L, k‖2)

]
⊃ N (nG,P )

XY (L, k‖1, k‖2) +N
(nG,c,2)
XY (L, k‖1, k‖2) , (C.24)

where

N
(nG,P )
XY (L, k‖1, k‖2) =

N
(G)
XX(L, k‖1)N

(G)
Y Y (L, k‖2)

N
(G)
Xδ (L, k‖1)N

(G)
Y δ (L, k‖2)

Lχ2Pδ1(L/χ) (C.25)

and

N
(nG,c,2)
XY (L,k‖1,k‖2)≡Lχ2

∫
`1

∫
`2

gX(`1,L−`1,k‖1)gY (`2,L−`2,k‖2)

×
(
P [`1−`2,k‖1−k‖2]fδ(`1,−`2,k‖1,−k‖2)fδ(L−`1,−L+`2,−k‖1,k‖2)

+
[
k‖1↔−k‖1

])
. (C.26)

C.3 O(φ0δ61) terms with δ3

There is a contribution arising from terms with one factor of F
(s)
3 when the following expan-

sion is inserted into the Ilen four-point function:

Ilen(`, k‖) ⊃ bL−1χ−2δ1(`/χ, k‖)

+ bL−1χ−2

∫
q

∫
q
F

(s)
3 (q,p,k − q − p)δ1(q)δ1(p)δ1(k − q − p)

∣∣∣∣
k=(`/χ,k‖)

.

(C.27)

As above, the relevant terms in the tree-level density trispectrum can be written as

T (1, 2, 3, 4) ⊃ 6 [F3(1, 2, 3)P1P2P3 + F3(1, 2, 4)P1P2P4

+F3(1, 3, 4)P1P3P4 + F3(2, 3, 4)P2P3P4] . (C.28)

Using eq. (C.23) to translate between the Ilen and δ four-point functions, with appropriate
changes of variables we find that〈

Ilen(`1,k‖1)Ilen(L1−`1,−k‖1)Ilen(−`2,−k‖2)Ilen(−L2+`2,k‖2)
〉

c

⊃ b4L−3χ−6(2π)2δD(L1−L2)6P [`1,k‖1]P [`2,k‖2]

×
[
P [L1−`1,k‖1]

{
F

(s)
3 ((`1,k‖1),(L1−`1,−k‖1),(−`2,−k‖2))+

[
k‖2↔−k‖2

]}
+P [−L2+`2,k‖2]

{
F

(s)
3 ((`1,k‖1),(−`2,−k‖2),(−L2+`2,k‖2))+

[
k‖1↔−k‖1

]}]
=L−1χ−2(2π)2δD(L1−L2)6C`1(k‖1)C`2(k‖2)

×
[
P [L1−`1,k‖1]

{
F

(s)
3 ((`1,k‖1),(L1−`1,−k‖1),(−`2,−k‖2))+

[
k‖2↔−k‖2

]}
+P [−L2+`2,k‖2]

{
F

(s)
3 ((`1,k‖1),(−`2,−k‖2),(−L2+`2,k‖2))+

[
k‖1↔−k‖1

]}]
.

(C.29)
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Thus, the terms with one factor of F
(s)
3 contribute to the estimator variance as

CovnG

[
X̂(L, k‖1), Ŷ ∗(L, k‖2)

]
⊃ N (nG,c,3)

XY (L, k‖1, k‖2) , (C.30)

where

N
(nG,c,3)
XY (L, k‖1, k‖2) (C.31)

≡ L−1χ−2

∫
`1

∫
`2

gX(`1,L− `1, k‖1)gY (`2,L− `2, k‖2) 6C`1(k‖1)C`2(k‖2)

×
[
P [L− `1, k‖1]

{
F

(s)
3 ((`1, k‖1), (L− `1,−k‖1), (−`2,−k‖2)) +

[
k‖2 ↔ −k‖2

]}
+P [−L+ `2, k‖2]

{
F

(s)
3 ((`1, k‖1), (−`2,−k‖2), (−L+ `2, k‖2)) +

[
k‖1 ↔ −k‖1

]}]
.

The N
(nG,c)
XY (L, k‖1, k‖2) term in eq. (2.39) is then simply the sum of eqs. (C.26) and (C.31).

D Additional information about mode-coupling kernels

D.1 Large-` limits

For reconstruction of lensing by large-scale structure, or of the tidal/density field, the modes
of the source field that contribute most in typical cases will have flat-sky wavenumber ` much
larger than the wavenumber L of the lensing mode being reconstructed. Therefore, it is useful
to derive approximate forms10 of the filters fφ and fδ [see eqs. (2.24) and (2.25)] for the case
where `� L.

First, note that

C|L−`| ≈
`�L

C` −L ·
∂`

∂`

∂C`
∂`

= C`

(
1− L · `

`2
α(`, k‖)

)
, (D.1)

with

α(`, k‖) ≡
∂ logC`(k‖)

∂ log `
. (D.2)

From this, we can expand fφ like so:

fφ(`,L− `, k‖,−k‖) = L ·
[
`C`(k‖) + [L− `]C|L−`|(k‖)

]
≈
`�L

L ·
[
`C`(k‖) + [L− `]C`(k‖)

(
1− L · `

`2
α(`, k‖)

)]
= L ·

[
LC`(k‖)− [L− `] L · `

`2
α(`, k‖)C`(k‖)

]
≈
`�L

L2

[
1 +

(
L̂ · ˆ̀

)2
α(`, k‖)

]
C`(k‖) . (D.3)

10For other works that make use of this approximation for various purposes, see refs. [19, 26, 44, 61, 69].
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We similarly expand fδ:

fδ(`,L−`,k‖,−k‖)

= 2L−1χ−2
[
F

(s)
2

(
−(`/χ,k‖),(L/χ,0)

)
C`(k‖)+F

(s)
2

(
−([L−`]/χ,−k‖),(L/χ,0)

)
C|L−`|(k‖)

]
= 2L−1χ−2

[
5

7

(
C`(k‖)+C|L−`|(k‖)

)
− 1

2
`·L

(
1

`2+χ2k2
‖

+
1

L2

)
C`(k‖)

− 1

2
(L−`)·L

(
1

|L−`|2+χ2k2
‖

+
1

L2

)
C|L−`|(k‖)

+
2

7

(`·L)2

(`2+χ2k2
‖)L

2
C`(k‖)+

2

7

([L−`]·L)2

(|L−`|2+χ2k2
‖)L

2
C|L−`|(k‖)

]

≈
`�L

2L−1χ−2

[
10

7
C`(k‖)−

1

2
C`(k‖)

(
1+
(
L̂·ˆ̀

)2
α(`,k‖)

)
+

4

7

`2

`2+χ2k2
‖

(L̂·ˆ̀)2C`(k‖)

]

= 2L−1χ−2

[
13

14
− 1

2

(
L̂·ˆ̀

)2
α(`,k‖)+

4

7

`2

`2+χ2k2
‖

(L̂·ˆ̀)2

]
C`(k‖) . (D.4)

We note that fφ ∝ L2 and fδ ∝ L0 in this limit, and also that both expressions become
independent of ` in the χk‖ � ` limit. These results provide helpful intuition for some of the
behaviors observed in sections 2.4 and 3.1.

D.2 Relationship to convergence and shear

We can further use the limits derived above to isolate the dependence of each mode-coupling
kernel on the angle between ` and L, and therefore the anisotropy of the two-point function of
small-scale intensity modes in the presence of long lensing or density modes [recall eq. (2.23)].
We can rewrite eq. (D.2) for α in terms of the tilt αP of the 3d power spectrum PI as

α(`, k‖) =
`2

`2 + χ2k2
‖
αP (`, k‖) , αP (`, k‖) ≡

∂ logPI(k)

∂ log k

∣∣∣∣
k=

√
`2/χ2+k2‖

. (D.5)

If we also write cos θ ≡ L̂ · ˆ̀, then eq. (D.3) for fφ can be rewritten as

fφ(`,L− `, k‖,−k‖) ≈
`�L

1

2
L2

{
2 +

`2

`2 + χ2k2
‖
αP (`, k‖)

+
`2

`2 + χ2k2
‖
αP (`, k‖) cos 2θ

}
C`(k‖) . (D.6)

Eq. (D.4) can similarly be rewritten as

fδ(`,L− `, k‖,−k‖) ≈
`�L

2L−1χ−2

{
13

14
+

`2

`2 + χ2k2
‖

[
−1

4
αP (`, k‖) +

2

7

]

+
`2

`2 + χ2k2
‖

[
−1

4
αP (`, k‖) +

2

7

]
cos 2θ

}
C`(k‖) . (D.7)
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The first lines of eqs. (D.6) and (D.7) are monopole-type distortions of the small-scale statis-
tics of the I field, while the second lines are quadrupole-type distortions, otherwise respec-
tively known as convergence and shear in the context of lensing. Recall that the fδ involves

the F
(s)
2 perturbation theory kernel in eq. (A.1). The three terms in this kernel correspond

to an isotropic “growth” effect, a “shift” that has the same form as a local coordinate trans-
formation at leading order, and an anisotropic distortion term [114]. The shift term has
exactly the same form as lensing, while the growth term adds an extra contribution to the
fδ monopole, and the anisotropic term adds to both the monopole and quadrupole.

Our ability to distinguish lensing from second-order gravitational nonlinearities arises
from two differences between fφ and fδ:

1. the different relative contributions of the monopole and quadrupole to each mode-
coupling kernel, and

2. the different scale-dependences of each monopole and quadrupole.

It is not necessary to have both of these differences in order to distinguish lensing from
gravitational nonlinearity at this order, however. For particular values of αP and ranges
of `/χ and k‖, these two differences will provide varying degrees of discriminating power
between lensing and gravitational nonlinearity.

Separate convergence and shear estimators (e.g. [26, 27, 44]) would separate the
monopole and quadrupole distortions in a particularly transparent manner, and may also
aid in distinguishing other sources of mode-coupling. We leave an investigation of this to
future work.

E Results of single-band 21cm lensing forecasts

In this appendix, we present our signal-to-noise forecasts for the lensing auto spectrum and
the cross spectra described in section 4.4, for individual redshift bands within the redshift
ranges of the 21cm surveys we consider in the main text. Tables 3, 4, and 5 contain the
results for our fiducial SKA1-Low reionization survey, with 5MHz bands; CHIME, with
25MHz bands; and HIRAX, also with 25MHz bands, respectively.

We have not explicitly performed forecasts for a set of bands that completely cover
each survey’s redshift range; instead, we have chosen a representative sample of bands. To
compute the total signal to noise for an entire survey, we 1) construct a cubic spline that
interpolates the S/N per band as a function of the band’s central redshift, 2) compute the
central redshifts of bands that would have the desired width and cover the entire redshift
range, 3) evaluate the spline at each central redshift, and 4) sum the resulting S/N values in
quadrature. We report these results in table 1.

In tables 3, 4, and 5, we have listed several derived values for each band, in addition to
the S/N values we have computed. The effective angular resolution `max is the maximum `
value at which the 21cm angular power spectrum is less than the instrument’s thermal noise
(i.e. the typical value where the solid and dashed curves cross in the analogs of the left panels
of figures 9 or 10). We also quote several values of jmax, based on different criteria:

• “jmax from noise”: the j value above which the 21cm power spectrum falls completely
below the instrument’s thermal noise.
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Single-band forecasts for SKA1-Low reionization survey

z ∆z `max jmax S/N

from noise from PT from BH 〈κκ〉 〈κgLSST〉 〈κγLSST〉
6 0.17 5000 17 12 14 1.4 6.5 3.8

7 0.23 4000 15 — 12 1.1 7.0 3.3

8 0.3 3200 13 — 10 0.76 6.5 3.2

10 0.45 2500 10 — 8 0.35 5.2 2.8

12 0.6 2000 7 — 6 0.14 3.8 2.1

14 0.8 1100 4 — 4 0.017 1.6 1.0

Table 3. Forecasts for the signal to noise on detections of 〈κκ〉, 〈κgLSST〉, or 〈κγLSST〉 (calculated
as described in section 4.4), for our fiducial SKA1-Low reionization survey from section 4.1, and for
redshift bands indicated by the first two columns. We also include several derived values: an effective
angular resolution `max, and the j (line-of-sight wavenumber) values at which the 21cm angular power
spectrum drops below the thermal noise, exceeds the range of validity of our perturbative calculation,
or fails to add signal to the bias-hardened lensing estimator.

• “jmax from PT”: at larger j values than this, the 3d wavenumber k =[
(`/χ)2 + (2πj/L)2

]1/2
surpasses the maximum wavenumber at which the tree-level

approximation in perturbation theory is valid (see table 1), if ` is set to `max as listed
in tables 3–5. For many CHIME/HIRAX bands, this jmax can be lower than the value
determined by thermal noise, meaning that it is our tree-level computation rather than
the instrument’s sensitivity that is limiting the range of the lensing estimator. This
could be improved by going to higher order in perturbation theory, or investigating
estimators calibrated with simulations, as in refs. [26, 27].

• “jmax from BH”: the maximum j value which will contribute any signal to the bias-
hardened lensing estimator. As discussed in section 3, we use jmax ∼ 2`max/χ for
this, but the lensing signal begins to drop off already around j ∼ `max/χ. For cross-
correlations with low-redshift tracers, this is typically not a limitation, since the range
of the tracers can be truncated such that bias-hardening is not needed.

We have also examined the effect of using wider bands for CHIME and HIRAX. Using
two 100MHz bands, corresponding to 1.4 < z < 1.85 and 1.85 < z < 2.5, we find that the
combined S/N for 〈κgLSST〉 or 〈κγLSST〉 are within ∼20% of the combined results from 25MHz
bands. However, we find that the S/N on 〈κκ〉 improves by about a factor of 3 compared
to the 25MHz-band case. This is because wider bands contain more low-k‖ modes, and
these modes have a large impact on the performance of the bias-hardened lensing estimator.
However, both the thermal noise in the receivers and the 21cm power spectrum will vary
more strongly over these wider bands, decreasing the validity of our assumption that both
can be evaluated at the mean redshift of each band; in this sense, the forecasts with narrower
bands are more realistic.
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Single-band forecasts for CHIME

z ∆z `max jmax S/N

from noise from PT from BH 〈κκ〉 〈κgLSST〉 〈κγLSST〉
1.2 0.085 700 17 5 11 0.077 6.0 4.1

1.4 0.1 650 15 7 10 0.091 8.1 6.2

1.6 0.12 600 15 8 9 0.090 10 7.9

1.8 0.14 550 15 10 8 0.081 12 9.7

2.0 0.16 500 14 11 7 0.067 13 11

2.2 0.18 480 13 13 7 0.053 14 11

2.4 0.2 450 12 14 6 0.043 14 11

Table 4. As table 3, but for individual 25MHz bands in CHIME. (See section 4.2 for the assumptions
used for these forecasts.)

Single-band forecasts for HIRAX

z ∆z `max jmax S/N

from noise from PT from BH 〈κκ〉 〈κgLSST〉 〈κγLSST〉
1.4 0.1 1100 17 3 16 0.10 6.3 7.1

1.6 0.12 1000 16 6 15 0.32 12 9.4

1.8 0.14 950 15 8 14 0.39 15 12

2.0 0.16 900 15 10 13 0.40 18 14

2.2 0.18 850 14 12 12 0.37 20 15

2.4 0.2 800 13 13 11 0.32 21 16

Table 5. As table 3, but for individual 25MHz bands in HIRAX.
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