Cosmology with the thermal-kinetic Sunyaev-Zel’dovich effect
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Compton scattering of the cosmic microwave background (CMB) from hot ionized gas produces
a range of effects, and the leading order effects are the kinetic and thermal Sunyaev Zel’dovich
(kSZ and tSZ) effects. In the near future, CMB surveys will provide the precision to probe beyond
the leading order effects. In this work we study the cosmological information content of the next
order term which combines the tSZ and kSZ effects, hereafter called the thermal-kinetic Sunyaev
Zel’dovich (tkSZ) effect. As the tkSZ effect has the same velocity dependence as the kSZ effect, it
will also have many of the useful properties of the kSZ effect. However, it also has its own, unique
spectral dependence, which allows it to be isolated from all other CMB signals. We show that with
currently-envisioned CMB missions the tkSZ effect can be detected and can be used to reconstruct
large scale velocity fields, with no appreciable bias from either the kSZ effect or other extragalactic
foregrounds. Furthermore, since the tkSZ effect arises from the well-studied pressure of ionized
gas, rather than the gas number density as in the kSZ effect, the degeneracy due to uncertain gas
physics will be significantly reduced. Finally, for a very low-noise experiment the tkSZ effect will be
measurable at higher precision than the kSZ effect.

Introduction—. Cosmological observations will signifi-
cantly increase in size and scope in the next few decades.
In particular, galaxy surveys and high resolution mea-
surements of secondary anisotropies in the cosmic mi-
crowave background (CMB) will shed light on new as-
pects of cosmology [1-4]. These efforts will be powerful
themselves, but taking cross-correlations of these observ-
ables will provide us further information of the Universe.
One such strategy would be large scale velocity recon-
struction with the kinetic Sunyaev-Zel'dovich (kSZ) ef-
fect [5], which arises from bulk flows of free electrons
along the line of sight. The first detections of the kSZ
effect have been obtained in the past few years, us-
ing galaxy redshift surveys together with high-resolution
maps of the CMB [6-12]. The precision of these measure-
ments will increase drastically in the near future [13-16].
These measurements are probes of both large-scale bulk
flows and the smaller-scale distribution of electrons in
halos. Measurements of the large-scale velocities can be
used to probe primordial non-Gaussianity and the growth
rate. While measurements of the latter have significant
possibilities for constraining fundamental cosmology, in-
cluding modifications to general relativity, it is subject to
astrophysical uncertainty arising from the distribution of
ionized gas within dark matter halos [16, 17]. This un-
certainty is known as the “optical depth degeneracy” and
several methods have been put forward to reduce it [18—
20]. In this article we explore the potential of relativis-
tic corrections to the SZ effects [21-26], which we call
the thermal kinetic Sunyaev-Zel’dovich (tkSZ) effect, for
velocity reconstruction. The tkSZ effect arises from the
thermal pressure of electron gas in moving halos, whereas

the kSZ effect arises from the gas density in moving halos;
depending on the gas temperature it is about a 1% cor-
rection to the kSZ effect. It is also known as a relativistic
correction to the kSZ effect [21, 24, 26], but can equally
be considered a velocity correction to the tSZ effect. Its
frequency dependence is different from both of the kSZ
and thermal Sunyaev-Zel’dovich (tSZ) effects. Given ob-
servations with enough frequency bands, we can distin-
guish and isolate each of these signals. Using the recently
proposed kSZ tomography technique [27], we show for the
first time that the tkSZ effect is detectable via the galaxy-
galaxy-tkSZ bispectrum in currently envisioned observa-
tional projects such as the Probe of Inflation and Cos-
mic Origins (PICO) [28] or CMB-HD experiments [29]
. This work complements Ref. [30] which discussed the
power spectrum of higher order thermal relativistic cor-
rections to the tSZ effect (rtSZ hereafter); hints of the
rtSZ correction, which is almost an order of magnitude
larger than the tkSZ correction, have been recently seen
[31, 32] and the rtSZ is one of the targets of upcoming
surveys [33, 34].

Relativistic SZ effects—. The SZ effects are spectral
distortions to the homogeneous and isotropic blackbody
spectrum of the CMB; see Ref. [35] for a review. They
are produced when the CMB photons are scattered by
electrons in halos after recombination, and hence they
are useful to investigate the thermodynamics of the elec-
trons, and the peculiar motions of the halos. To compute
the SZ effects, we solve the Boltzmann equations for pho-
tons including Compton scattering. For cosmology, we
are interested in using the properties of many SZ sources,
so we apply moment expansion schemes to simplify the



calculations [23-26, 36]. Using this technique, we expand
the Boltzmann equation in terms of the relativistic cor-
rections with the single scattering approximation.

Let v and Toyp = 2.725K be the photons’ frequency
and the CMB temperature today. The background phase
space distribution function of the CMB is written by
a Planck distribution f = [exp(hv/kpToms) — 1]71,
with h and kp being the Planck and Boltzmann con-
stants. We Taylor expand the CMB distribution func-
tion, f, around f in terms of the electron temperature-
mass ratio 0, = kpT,/ mec?, and the halos’ 3-velocity v.
Defining the derivative operator D = —vd/0v, we in-
troduce two functions of photon frequency v: G = Df,
and Y = (D? — 3D)f. G is the frequency dependence
of the primary temperature anisotropies, and ) is that
of the Compton y parameter. We generalize the n-th
derivatives of the Planck distribution in terms of v as
V() =D"=2Y for n > 2. Using these functions, we write
the spectral distortion 6f = f — f due to the Compton
scattering in halos as [23-26]

of = /dxneoTaS, (1)

where n., a, and x are electron number density in the
cluster rest frame, the scale factor and the comoving dis-
tance, and the source function is [24, 26, 37]
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with line-of-sight direction n. These terms correspond re-
spectively to the tSZ, rtSZ, kSZ, and tkSZ effects, the lat-
ter of which is the focus of this paper. We have dropped
higher order corrections in terms of 6, and v-n as they are
subdominant for typical halos [24, 26]. We assumed that
the halo’s incoming photon distributions are the homo-
geneous and isotropic Planck distribution. Note that the
optical depth in the CMB rest frame depends on the ha-
los’ velocity, and —)(®) in the second line is a frequency
shift because of this effect [37]. Eq. (1) evaluated on the
sky can be factored into its dependence on line-of-sight
direction and frequency according to

6f(v,n) =0m)G(¥) +ym)Y(¥) + a(m)Aw) + ..., (3)
where ©(n) is a dimensionless temperature perturbation
composed of the primary anisotropy, kSZ and integrated
Sachs-Wolfe (ISW) effects. A(v) = 2G(v)/5 — Y (v) +
7Y3)(v)/5 is the frequency response for the tkSZ effect
parameterized by a(n). Combining Eqs. (1) and (3), we
obtain
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FIG. 1. Spectral response for the kSZ effect (blue, x *G),
the tSZ effect (orange), the tkSZ effect (red) and the rtSZ
(green). The frequency bands for the experiments we consider
are shown in grey.

where p = nekpTe is the electron pressure. This effect can
be contrasted with the tSZ effect y = fdep, and the
kSZ effect Oygz = f dxaornev/cn. Thus the calculation
of the tkSZ effect is identical to the kSZ, effect except the
electron density is replaced by the pressure.

Isolating the signal—. The sky is composed of many
different signals, and to study the very faint tkSZ effect
we need to isolate it from the other backgrounds. Given
observations with enough frequency channels we can use
the unique spectral signature in Fig. 1 to isolate the tkSZ
effect from the other sky signals. We use the constrained
internal linear combination (cILC) method [38] to do this
and to ensure that there is no contamination from the
larger kSZ effect with similar velocity dependence. Due
to the tkSZ’s velocity dependence, there is no bias to
our detection methods (described below) from the tSZ
or cosmic infrared background (CIB), but these signals
contribute effective noise. The cILC approach is con-
structed to yield minimum-noise maps of the tkSZ effect,
but with zero response to the kSZ. This is enabled by
our perfect knowledge of the spectrum of both signals.
We summarize this method here and refer the reader to
Ref. [38] for more details. The measured intensity at a
frequency v;, s;(n), can be given by discretizing Eq. (3),
with the appropriate phase space volume element

si(n) = a(n)A; + ©(n)G; + N;(n), (5)

where G; = 2hv3c™2G(v;) is a vector of the spectral
dependencies of the CMB, ISW and kSZ effects, and
A; = 2hv3c 2 A(y;) is that of the tkSZ effect at the
observed frequencies. The N;(n) are all other signals,
which we assume consist of: tSZ, rtSZ, CIB, radio galax-
ies, galactic dust emission, instrumental noise and, for



ground-based surveys, atmospheric noise. In Table I we
summarize the spatial and spectral properties of these
components. We assume that the CIB and tSZ are cor-
related at the 10% level [39] and the rtSZ, tSZ, tkSZ and
kSZ correlations are described by the halo model. For
simplicity we do not allow for frequency decoherence of
the CIB. For the amplitude of the power spectrum of
dust, we assume the measurement of Ref. [40], which is
a fit to a relatively small fraction of sky; however, we
found that our results are unchanged if the amplitude of
galactic dust power is increased by a factor of ten.

We consider two reference experiments. First, a space-
based survey with extensive frequency coverage. Our
setup is based on the recently proposed PICO experi-
ment [28]. The PICO satellite would have 23 frequency
channels, shown as vertical bars in Fig. 1; in its most
sensitive channel, 154 GHz, it has a sensitivity of 1.5 uK-
arcmin and resolution of 6.2 arcmin. Secondly, a ground-
based survey, with reduced frequency coverage but signif-
icantly higher angular resolution. We adopt the parame-
ters of the recently-envisioned CMB-HD experiment [29],
with 7 frequency channels and a maximal sensitivity of
0.7 pK-arcmin and resolution of 0.42 arcmin at 90 GHz.
We forecast the statistics of the isolated tkSZ map by
using the cILC estimator:
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where the matrix ¥;; = (s;s;) is the covariance between
observed signals at frequency ¢ and j. In harmonic space,
¥ is reduced to the observed cross power spectra at mul-
tipole ¢. Using this formalism the power spectrum of the
isolated tkSZ signal, Cf*, is
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which includes the signal, experimental noise and resid-
ual foregrounds. The resulting spectra, dominated by
noise and residual foregrounds, are shown in Fig. 2 for
our two experiments. We note that the constraint of de-
manding zero response to the kSZ comes at the cost of
increasing the variance of the tkSZ map on small angular
scales by a factor of 4 (for the ground based experiment);
however, to be conservative we include this constraint in
our forecasts below.

The tkSZ power spectrum—. We extend the formal-
ism in Ref. [42] to compute the tkSZ power spectrum.
This is done by replacing the electron density in the kSZ
power spectrum with the electron pressure. Thus the
tkSZ power spectrum is
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TABLE I. Spectral and spatial dependence of the foregrounds
we include in isolating the tkSZ effect. Here, B, (T) is the
spectral radiance of a blackbody at the CIB or dust temper-
ature. We use Refs. [40, 41] for the foreground parameters.

Component |Spectral dependence| Spatial dependence
CMB +kSZ x 3G cP®

tSZ x 3y oy

CIB x VP8 B, (Tas) | AS™ + Ac(£/0:)Cm®
Radio o /PRadio ARadio(£/0.)*Radio
Galactic Dust| oc 1”0t B, (Thust) | Apust (£/€c)*Pust

where H is the Hubble parameter, f is the logarithmic
derivative of the growth factor (dlog D/dloga), p/ =k -
k' and Pgién is linear matter power spectrum. We use the
halo model [43] to compute the non-linear pressure power
spectrum P,,, using a modified version of the hmvec code
[44] and with the cluster pressure profiles from Ref. [45].
In addition we compute the cross power spectrum with
the kSZ effect, using the electron density profiles from
Ref. [46].

One may wonder if we are able to directly observe the
tkSZ power spectrum or tkSZ-kSZ cross power spectrum
by exploiting the specific frequency dependence of the
tkSZ effect. However, we find that measuring these cor-
relations is difficult as the auto-spectrum is tiny and, at
large scales, the cross spectrum is limited by the CMB
noise from the primary CMB (which cannot be separated
from the kSZ). These power spectra are shown in Fig. 2.
We see that the signal is beyond the detection capabilities
of upcoming experiments.

The galaxy-galaxy-tkSZ bispectrum—. Several meth-
ods have been used for detecting the kSZ effect from
galaxy survey. These include stacking differences of the
CMB temperature at locations of objects [6, 7, 47, 48], as
well as performing a velocity-weighted stack of CMB tem-
peratures on the objects, in which the velocities are ob-
tained from a three-dimensional map of structure [11, 12].
Ref. [27] showed that these methods are all measures of
the galaxy-galaxy-kSZ bispectrum, which is a sensitive
probe of cosmological parameters [16, 49]. The velocity
dependence of the tkSZ effect means that we can utilise
the same machinery to study the galaxy-galaxy-tkSZ bis-
pectrum, which is the main result of this paper. Follow-
ing Ref. [27], we use a simplified ‘snapshot’ geometry to
approximate cross correlations with galaxy surveys. This
geometry simplifies the light cone evolution effects. We
model the universe as a periodic 3D box with comov-
ing side length L at a snapshotted redshift z, and use *
to denote quantities at this snapshotted time. We also
work in the flat-sky approximation, assuming the sky to
be periodic with angular side length L/x..

We decompose the observed galaxy density field,
g(x) and tkSZ map, «(n), into Fourier compo-
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FIG. 2. The tkSZ auto spectrum (brown) and its cross cor-
relation with the kSZ effect (purple). Also plotted are the
constrained ILC noise curves for the CMB-HD (dashed or-
ange) and PICO-like experiments (dashed blue). For scale,
we plot the kSZ power spectrum (red) and the 1 pK-arcmin
noise curve (dotted).

nents as gk) = [d3xg(x)e”™®* and «a(f) =
[ d®na(n)e~™*.  Symmetries simplify the momen-
tum dependence of the bispectrum and we find
(9)g()a(®) = iByga(k, K. Lk)  [27], where
the prime on the bracket implies that we omitted
(2m)36®) (k + K + £/x.). Ref. [27] showed that the sig-
nal to noise ratio (SNR) is dominated by squeezed config-
urations, i.e. k;, < kg ~ £/x. and we confirm that this
is also the case for the tkSZ. With the approximations of
Ref. [27], that the squeezed bispectrum can be approxi-
mated by the tree level bispectrum with the linear power
spectra replaced by the non linear power spectra, we find

 Ruk, [Pyu(K)

Pou(k)
I )

B Ponlh) = 22 P ()|, (9)

where Pxy = (X (k)Y (k’))’ are the cross power spectra
of X and Y. To compute the non-linear P, (k) we use the
halo model [43], the galaxy HOD [50, 51] from Refs. [52,
53] and the cluster pressure profiles from Ref. [45]. With
these approximations, the SNR is given by

aNRr2— VL[4 ai Py, (qar)  asPr,(qs)
T 1273y 2 aLeds Ptot(qr) ptot Aaa
Xk g9 qrL ng (qS)CkSXx

(10)

Note that the derivation of Eq. (10) is parallel to that of
kSZ tomography in [27] with the replacement of n, with
p. We consider how our two reference experiments can
be combined with an upcoming DESI-like spectroscopic
survey [4] to measure the tkSZ bispectrum. We assume
the mean redshift of the galaxy survey is 0.75, that the

4

volume of overlap with the CMB survey is 116 Gpc?,
the galaxy bias is 1.51 and the observed galaxy number
density 1.7 x 10=% Mpc~3.

We find that both experiments would be able to detect
the galaxy-galaxy-tkSZ bispectrum at the ~ 8o level.
Note that the experiments achieve this SNR from differ-
ent scales, with CMB-HD gaining information from much
smaller scales. In Fig. 3 we explore the detectability as
the experimental noise level in all channels is scaled by
the same factor, finding that a 30 detection would still
be possible from either survey if the map-level noise were
increased by a factor of ~ 4 A key requirement to detect
this signal is a wide range of frequencies with low noise, in
order to separate the foregrounds and deproject the kSZ
signal. For an upcoming ground-based survey with more
modest angular resolution than CMB-HD, namely CMB-
S4 [54] used together with CCAT-prime for the higher
frequencies [55], we find a marginal detection prospect of
2.1c0. Additionally we note that, as our constraints are
limited by the noise in the CMB leg, other spectroscopic
surveys will only be able to detect this signal at a simi-
lar significance. For example a Euclid like survey, based
on the configuration in [56], in combination with either
CMB-HD or PICO, would have a detection significance
of ~ 60. Note that in the longer term, this effect could
be detected at a very high significance: we find that the
cosmic variance limit SNR (with an £, = 5000) is 1340,
assuming the covariance matrix only has Gaussian contri-
butions. This is higher than the equivalent CV limit for
the kSZ effect, as the kSZ SNR is limited by the primary
CMB and reionization kSZ signals that act as noise.

In this work the only systematic uncertainty we have
accounted for is the impact of other signals in the CMB
maps as this is expected to be the main potential system-
atic. The parity odd nature of the signal, as well as the
largely independent systematics in the galaxy and CMB
components, means this should be a robust measurement.
One other potential systematic is redshift space uncer-
tainties; Ref. [27] explored how these would impact such
bispectrum analyses. For a photometric survey this effect
can strongly degrade the constraints, but spectroscopic
surveys (such as DESI and Euclid as considered here)
are unaffected. Finally we investigated how uncertain-
ties in the gas pressure distribution affect our results. We
found that 10% variations in the amplitude of the pres-
sure cluster-mass relation and the spectral index of the
pressure profile resulted in < 10% changes in the SNR
ratio. Finally, a simple investigation of the impact of
CIB decoherence found that the results from the ground
based experiment are robust to CIB decoherence, how-
ever the space based mission could be degraded by up to
a factor of a two.

Conclusion—. In this work we have identified tkSZ ef-
fect as a new cosmological observable. As a higher-order
SZ effect it is a small signal, however we have found that
this signal would be detectable by the envisioned PICO
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FIG. 3. Signal to noise ratio for the galaxy-galaxy-tkSZ as
would be obtained using methods similar to current methods
to constrain the kSZ effect, with our baseline experiments
showing ~ 8¢ forecasts (circles). On the horizontal axis we
scale these nominal map level instrumental sensitivities at all
frequencies by the amount shown, in order to demonstrate the
impact on the SNR. For context, we plot, with dashed lines,
the equivalent SNR for the galaxy-galaxy-kSZ signal.

and CMB-HD experiments when combined with DESI or
Euclid. This is achievable due two features of the signal:
firstly, as the signal has a unique spectral signature; and
secondly, the velocity dependence of the signal means
that it has a vanishing cross-correlation with most other
sky signals.

Whilst we have focused on outlining the origin and
detectability of this effect, there are several interest-
ing potential applications. Perhaps most interestingly,
we can use the galaxy-galaxy-tkSZ bispectrum to recon-
struct the large scale velocity field. This can used to
constrain primordial non-Gaussianity and modifications
to GR [16, 17, 57].

For the later goal, tkSZ tomography would be highly
complementary to standard kSZ tomography; primarily
as the tkSZ approach could aid the optical depth prob-
lem. This arises for kSZ tomography as the distribution
of electrons is uncertain and means that velocity recon-
struction methods have an unknown normalization. This
is not the case for the tkSZ, since it instead depends on
the cluster pressure profile, which can be determined by
tSZ measurements to a much higher precision than the
electron distribution. Finally, we note that in the longer
term, the tkSZ power spectrum could be measured, in-
stead of the cross bispectrum discussed here. tkSZ power
spectrum measurements would directly probe the large
scale pressure-velocity power spectrum, though we defer
a thorough discussion of this to the future.
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