64 research outputs found

    Ancient Egypt 1922 Part 1

    Get PDF
    Part 1 of the 1922 Ancient Egypt books. Contents include the tree of the Herakleopolite Nome, the sarcophagus of Pa-Ramessu, and knots.https://knowledge.e.southern.edu/kweeks_coll/1018/thumbnail.jp

    Ancient Egypt 1923 Part 3

    Get PDF
    Part 3 of the 1923 Ancient Egypt books. Contents include types of early scarabs, the Ka in Egypt and Arabia, supports of Pylon flagstaves, Pithom and Raamses, and current fallacies about history.https://knowledge.e.southern.edu/kweeks_coll/1024/thumbnail.jp

    Ancient Egypt 1920 Part 4

    Get PDF
    Part 4 of the 1920 Ancient Egypt books. Contents include Coptic twists and plaits, the sphinxes of Tanis, Alexandrian world maps, passages of Aleppo Citadel, and Kheker friezes.https://knowledge.e.southern.edu/kweeks_coll/1013/thumbnail.jp

    Wide-field two-dimensional multifocal optical-resolution photoacoustic-computed microscopy

    Get PDF
    Optical-resolution photoacoustic microscopy (OR-PAM) is an emerging technique that directly images optical absorption in tissue at high spatial resolution. To date, the majority of OR-PAM systems are based on single-focused optical excitation and ultrasonic detection, limiting the wide-field imaging speed. While 1D multifocal OR-PAM (1D-MFOR-PAM) has been developed, the potential of microlens and transducer arrays has not been fully realized. Here we present the development of 2D multifocal optical-resolution photoacoustic-computed microscopy (2D-MFOR-PACM), using a 2D microlens array and a full-ring ultrasonic transducer array. The 10 mm×10 mm microlens array generates 1800 optical foci within the focal plane of the 512-element transducer array, and raster scanning the microlens array yields optical-resolution photoacoustic images. The system has improved the in-plane resolution of a full-ring transducer array from ≥100 to 29 μm and achieved an imaging time of 36 s over a 10  mm×10  mm field of view. In comparison, the 1D-MFOR-PAM would take more than 4 min to image over the same field of view. The imaging capability of the system was demonstrated on phantoms and animals both ex vivo and in vivo

    Distinguishing tumor admixed in a radiation necrosis (RN) background: 1H and 2H MR with a novel mouse brain-tumor/RN model

    Get PDF
    PURPOSE: Distinguishing radiation necrosis (RN) from recurrent tumor remains a vexing clinical problem with important health-care consequences for neuro-oncology patients. Here, mouse models of pure tumor, pure RN, and admixed RN/tumor are employed to evaluate hydrogen ( MATERIALS AND METHODS: A pipeline of common quantitative RESULTS: Differences in quantitative CONCLUSIONS: These findings, employing a pipeline of quantitativ

    Wide-field two-dimensional multifocal optical-resolution photoacoustic-computed microscopy

    Get PDF
    Optical-resolution photoacoustic microscopy (OR-PAM) is an emerging technique that directly images optical absorption in tissue at high spatial resolution. To date, the majority of OR-PAM systems are based on single-focused optical excitation and ultrasonic detection, limiting the wide-field imaging speed. While 1D multifocal OR-PAM (1D-MFOR-PAM) has been developed, the potential of microlens and transducer arrays has not been fully realized. Here we present the development of 2D multifocal optical-resolution photoacoustic-computed microscopy (2D-MFOR-PACM), using a 2D microlens array and a full-ring ultrasonic transducer array. The 10 mm×10 mm microlens array generates 1800 optical foci within the focal plane of the 512-element transducer array, and raster scanning the microlens array yields optical-resolution photoacoustic images. The system has improved the in-plane resolution of a full-ring transducer array from ≥100 to 29 μm and achieved an imaging time of 36 s over a 10  mm×10  mm field of view. In comparison, the 1D-MFOR-PAM would take more than 4 min to image over the same field of view. The imaging capability of the system was demonstrated on phantoms and animals both ex vivo and in vivo

    Discriminating radiation injury from recurrent tumor with [18F]PARPi and amino acid PET in mouse models

    Full text link
    Background Radiation injury can be indistinguishable from recurrent tumor on standard imaging. Current protocols for this differential diagnosis require one or more follow-up imaging studies, long dynamic acquisitions, or complex image post-processing; despite much research, the inability to confidently distinguish between these two entities continues to pose a significant dilemma for the treating clinician. Using mouse models of both glioblastoma and radiation necrosis, we tested the potential of poly(ADP-ribose) polymerase (PARP)-targeted PET imaging with [18F]PARPi to better discriminate radiation injury from tumor. Results In mice with experimental radiation necrosis, lesion uptake on [18F]PARPi-PET was similar to contralateral uptake (1.02 ± 0.26 lesion/contralateral %IA/ccmax ratio), while [18F]FET-PET clearly delineated the contrast-enhancing region on MR (2.12 ± 0.16 lesion/contralateral %IA/ccmax ratio). In mice with focal intracranial U251 xenografts, tumor visualization on PARPi-PET was superior to FET-PET, and lesion-to-contralateral activity ratios (max/max, p = 0.034) were higher on PARPi-PET than on FET-PET. Conclusions A murine model of radiation necrosis does not demonstrate [18F]PARPi avidity, and [18F]PARPi-PET is better than [18F]FET-PET in distinguishing radiation injury from brain tumor. [18F]PARPi-PET can be used for discrimination between recurrent tumor and radiation injury within a single, static imaging session, which may be of value to resolve a common dilemma in neuro-oncology
    • …
    corecore