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Preclinical imaging is critical in the development of translational strategies to detect diseases and monitor
response to therapy. The National Cancer Institute Co-Clinical Imaging Resource Program was launched, in
part, to develop best practices in preclinical imaging. In this context, the objective of this work was to de-
velop a 1-hour, multiparametric magnetic resonance image-acquisition pipeline with triple-negative breast
cancer patient-derived xenografts (PDXs). The 1-hour, image-acquisition pipeline includes T1- and T2-
weighted scans, quantitative T1, T2, and apparent diffusion coefficient (ADC) parameter maps, and dynamic
contrast-enhanced (DCE) time-course images. Quality-control measures used phantoms. The triple-negative
breast cancer PDXs used for this study averaged 174 � 73 �L in volume, with region of interest–averaged
T1, T2, and ADC values of 1.9 � 0.2 seconds, 62 � 3 milliseconds, and 0.71 � 0.06 �m2/ms (mean �
SD), respectively. Specific focus was on assessing the within-subject test–retest coefficient-of-variation (CVWS)
for each of the magnetic resonance imaging metrics. Determination of PDX volume via manually drawn re-
gions of interest is highly robust, with �1% CVWS. Determination of T2 is also robust with a �3% CVWS.
Measurements of T1 and ADC are less robust with CVWS values in the 6%–11% range. Preliminary DCE tes-
t–retest time-course determinations, as quantified by area under the curve and Ktrans from 2-compartment ex-
change (extended Tofts) modeling, suggest that DCE is the least robust protocol, with �30%–40% CVWS.

INTRODUCTION
Triple-negative breast cancer (TNBC) is an aggressive tumor
characterized by poor outcomes and higher relapse rates com-
pared with other subtypes of breast cancer. Pathologic complete
response often serves as an important endpoint in the treatment
of TNBC following neoadjuvant chemotherapy. It is critical to
identify patients who will respond to neoadjuvant chemotherapy
and, thus, avoid the use of ineffective treatments in nonresponding
patients. Toward that end, advanced quantitative imaging (QI)
strategies have been developed and evaluated for predicting or
assessing response to therapy in breast cancer. Although signifi-
cant progress has been made in advancing such QI approaches,
preclinical imaging remains a critical component in the transla-
tional pipeline of validating advanced QI methods for applications
in drug discovery and assessment of response to therapy.

It is well appreciated that established tumor cell lines fail to
fully recapitulate the microstructural/environmental, cellular,
molecular, genetic and epigenetic properties, including abnor-
mal vasculature with higher blood-vessel permeability, found in
clinical TNBC tumors (1). To that end, patient-derived tumor
xenografts (PDXs) are considered to provide more faithful tumor
models than traditional orthotopic implantation of established
tumor cell lines. The use of PDXs also ushers in new paradigms
involving coclinical trials in which QI applied to PDXs can be
implemented in the corresponding patient in a clinical setting
and vice versa. However, there are challenges in developing
optimal quantitative pipelines to assess response to therapy in a
preclinical setting. Most preclinical (small-animal) magnetic
resonance imaging (MRI) studies of cancer models involve tu-
mor-cell implantation into the brain or leg (thigh) of the subject
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[see, for example (2-5)], which can be readily secured in the
small-animal bed/cradle of the scanner, thus minimizing arti-
facts caused by respiratory motion. However, in light of the
significance of the tumor microenvironment in tumor growth
and pathogenesis following cell implantation, it is relevant
that TNBC PDXs be implanted into mammary fat pads, which
are more susceptible to respiratory motion–related imaging
artifacts.

Recognizing the challenges of preclinical imaging using
realistic models of cancer, the National Cancer Institute recently
launched the Co-Clinical Imaging Resource Program to develop
best practices in preclinical imaging and support clinical trials.
In this context, the objective of this work was to develop and
implement a 1-hour, multiparametric MRI acquisition pipeline
with orthotopic TNBC PDXs. Tumor cells were implanted into
the fourth (inguinal/abdominal) mammary fat pad of NSGTM

mice and characterized by a pipeline of preclinical MRI experi-
ments that included T1-weighted (T1W) and T2-weighted (T2W)
scans, quantitative T1, T2, and apparent diffusion coefficient
(ADC) parametric maps, and a dynamic contrast-enhanced
(DCE) protocol.

Conceptually, the project progressed through 3 stages:
(1) the precision and accuracy of the MRI acquisition pipeline’s
protocols were assessed via phantoms with known MR proper-
ties; (2) artifacts from respiratory motion were suppressed by
paying careful attention to mouse handling/placement within
the scanner’s cradle/bed, and, finally (3) the in vivo test–retest
reproducibility (precision) of MRI metrics was determined with
orthotopic TNBC PDXs.

METHODS
Generation of TNBC PDX

TNBC PDX. Tumors were generated in collaboration with the
Human and Mouse-Linked Evaluation of Tumors (HAMLET)
core of the Washington University School of Medicine’s Institute
of Clinical and Translational Sciences (http://digitalcommons.
wustl.edu/hamlet/). Details regarding animals, surgeries, and
tumor xenografts may be found in the report by Li et al. (6). All
animal experiments were conducted in compliance with the
Guidelines for the Care and Use of Research Animals established
by Washington University’s Institutional Animal Care and Use
Committee.

Experiments used NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NOD/
SCID) female mice obtained from The Jackson Laboratory (Bar
Harbor, ME). Mouse mammary fat pads were humanized as
previously described (7). Tumor samples from patients with
breast cancer were placed in ice-chilled DMEM/F12 medium,
necrotic tissue and fat were removed, and the samples were cut
into 1- � 1-mm2 pieces. Tissue fragments were engrafted into
the mammary glands. When xenograft tumors reached 1.5 cm in
diameter, they were harvested and dissociated into a single-cell
suspension.

Implantation of breast cancer cells used an inverted Y-shaped
incision along the thoracic–inguinal region to expose the mam-
mary glands. Two-to-4 million tumor cells mixed with Matrigel
in a volume of 30 �L were injected into the fourth inguinal
mammary fat pad. The skin was gathered, and the incision
closed with wound clips. Following engraftment, tumor growth
was monitored by means of calipers.

MRI Scanner and RF Coil Configuration
All experiments were performed on an Agilent/Varian (Santa
Clara, CA) DirectDrive 4.7-T small-animal MR scanner built
around an Oxford Instruments (Abingdon, UK) horizontal su-
perconducting magnet, with a gradient/shim coil assembly hav-
ing a 12-cm inner-bore diameter and providing 60 G/cm with
200-�s rise time. All MR images, including phantoms, were
acquired using the same laboratory-built actively decoupled
transmit (volume, 7.5-cm inner diameter) and receive (surface,
2.5-cm inner diameter) coil pair (8).

Homogeneous Aqueous Phantoms
Phantoms composed of homogeneous aqueous solutions, doped
with various amounts of manganese chloride (9) to span the T1
and T2 values encountered in vivo, were used to set pulse
sequence parameters and quantify performance under ideal
conditions.

Six-Compartment Variable Relaxation Phantom. A 6-com-
partment phantom was used to bridge the nominal range of in
vivo T1 and T2 values expected during the DCE time course. This
phantom was then used to set the flip angle (FA) in the high
temporal resolution (3 seconds) DCE protocol. Solutions of 6
different MnCl2 concentrations (12.5, 25, 50, 100, 200, and 400
�M) were prepared in deionized water using manganese chlo-
ride tetrahydrate (MilliporeSigma, Burlington, MA). Further, 0.3
mL of each solution was transferred into separate 5-mm glass
NMR tubes, and the 6 tubes were packed together as a bundle.

The top of the bundle was placed just within the plane of the
surface coil, and data were collected from image slices perpen-
dicular to the bundle axis. Thus, the MRI slice plane and surface-
coil plane were parallel and orthogonal to the axial orientation
of the 6-tube phantom, and all 6 tubes—as defined by the slice
plane cutting through the tubes—were at the same fixed distance
from the surface coil. The offset distance from the surface coil to
the slice plane used for the 6-tube phantom was typical of the
distance from the surface coil through the center of the PDXs
used in this study.

The temperature of the air surrounding the phantom was
regulated (37°C) using a temperature control system (SA Instru-
ments, Stony Brook, NY); 1 hour was allowed for temperature
equilibration. The pulse-sequence parameters were those used
subsequently for in vivo DCE-MRI of PDX-bearing mice with
the exception that only a single slice was interrogated for a
single measurement at each of 18 FAs from 2° to 45°.

In a separate set of experiments, each tube was examined
individually and in quintuplicate at 37°C using a small solenoid
radiofrequency (RF) coil and standard MR spectroscopy relax-
ation measurement to determine T1 and T2. Parameters varied
for each sample: repetition time (TR) � 5 times the expected T1,
TI, and echo time (TE) arrayed to cover 3–5 expected decay
e-foldings. Nonlinear least-squares, monoexponential modeling
was used to estimate T1 and T2 values and the r1 and r2 relax-
ivities of MnCl2.

Single-Compartment Phantom. A 5-mL spherical plastic
phantom was filled with 150-�M MnCl2 solution to evaluate the
inherent measurement accuracy and precision of the MRI pro-
tocols used herein. This concentration was chosen, based on the
measured relaxivities (r1 and r2) of Mn2� determined herein, to
broadly mimic that of in vivo PDX. The temperature of air
surrounding the phantom was controlled (37°C), as described
earlier. The pulse-sequence parameters were those used subse-
quently for in vivo scanning of PDX-bearing mice (ie, same slice
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thickness, multiple slices through the phantom in a field of view
(FOV) approximating the typical PDX location). Analysis used a
1-mL region of interest (ROI) manually drawn in a region im-
mediately below the surface coil, anticipating and mimicking
PDX versus surface-coil positioning. The signal-to-noise ratio
(SNR) was nominally in the same range encountered herein with
PDX in vivo. T1, T2, and ADC measurements were repeated in
quintuplicate, with the phantom removed from and repositioned
within the scanner after each measurement set.

In Vivo MRI of PDX-Bearing Mice
Mice were maintained on a temperature-controlled warm-water
pad and anesthetized with isoflurane/O2 (1.2%–1.5% isoflurane)
throughout the experiment. Within the scanner, the mice were
positioned on their sides in a 2.2-cm-inner-diameter half-cyl-
inder cradle to allow the tumor, facing up, to be located imme-
diately under the surface coil. Tape and a modified ridged plastic
panel (10) were placed judiciously to isolate the diaphragm and
restrict respiratory motion to the chest area, away from the
tumor and lower abdomen. Figure 1 shows a sketch of the
experimental setup. Figure 2 compares representative DCE time-
course data (single-slice tumor ROI averaged) in the absence and
presence of respiratory motion constraints. Respiratory rate and
body temperature (rectal probe) were monitored, and core tem-
perature was regulated (37°C) with a small-animal physiologic
monitoring and control unit (SA Instruments), which was also
used for respiratory gating.

For all protocols except DCE, the initial “test” portion of the
protocol was performed in the morning of a given day, and the
second “retest” portion of the protocol was performed in the
afternoon of the same day (n � 13). Typically, the interval
between test and retest portions of the protocol was 3–4 h,
during which time, each mouse was returned to its cage and
allowed access to food and water ad libitum. For the test–retest
DCE protocol, the initial “test” portion of the protocol was

performed in the afternoon of a given day following the retest
T1-, T2-, and ADC-map data acquisitions, and the second “re-
test” portion of the DCE protocol was performed the following
morning, allowing time for washout and excretion of contrast
agent (n � 4). Typically, the interval between the test and retest
portions of the DCE protocol was 16–20 h, during which time,
each mouse was returned to its cage and allowed access to food
and water ad libitum. In aggregate, these test–retest scanning
sessions were conducted over a 4-month period.

Setting up the mouse in the scanner and acquiring scout,
T1W, and T2W images took �15 minutes. During this time, the
animal’s core temperature stabilized at the desired 37°C target. A
schematic of the overall image acquisition pipeline including
DCE is shown in Figure 3, and pulse sequence parameters are
given below and summarized in Table 1.

T1W and T2W images were acquired at identical resolution:
matrix size � 128 � 128, FOV � 25.6 � 25.6 mm2, slice
thickness � 1 mm, number of transaxial slices � 15. Following
T1W and T2W anatomic scanning, quantitative T1-, T2-, ADC-
maps and a DCE time series of images were acquired using a
reduced matrix size, 64 � 64.

T2W and T1W Images. T1W images were collected with a 2D
gradient-echo multislice sequence: TR � 100 milliseconds, TE �
2 milliseconds, averages � 4; FA � 30°, data-acquisition time �
52 seconds. T2W images with and without fat saturation were

Figure 1. Sketch of animal positioning: Each
patient-derived xenograft (PDX)-bearing mouse
was placed on its side in a half-cylinder cradle.
Respiratory motion–induced artifacts were mini-
mized with (i) a ridged plastic panel (10) and (ii)
judicious use of tape at locations above and be-
low the tumor (dashed lines) and applied very
lightly over the tumor (dotted lines). The tape over
the mouse body also secured the ridged plastic
panel in place. The surface-coil receiver was
placed immediately above the tumor (8).

Figure 2. Representative examples comparing a
dynamic contrast-enhanced (DCE) time course (2D
slice, tumor region of interest [ROI] averaged) in
the absence (A) and presence (B) of good motion
control.
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collected with a 2D fast-spin-echo multislice sequence: echo
train length (ETL) � 4, TR � 2 seconds, effective TE � 52
milliseconds, averages � 4, 90° fat saturation RF pulse � 6
milliseconds, data-collection time � 4 minutes 32 seconds each.

T1 and T2 Maps. T1 mapping used a variable flip angle, 2D
gradient-echo pulse sequence: FA � 5°, 10°, 15°, 30°, and 50°;
TR � 50 milliseconds; TE � 1.6 milliseconds; averages � 8;
data-collection time � 2 minutes 8 seconds. T2 mapping used a
multispin-echo, multislice pulse sequence: TR � 6 seconds, TE
� 16 milliseconds, �TE � 16 milliseconds, echoes � 16, average
� 1, data-acquisition time � 7 minutes 12 seconds.

ADC Maps. ADC mapping used a respiratory-gated, spin-
echo, multislice sequence: TR � 1.0 seconds, TE � 23 millisec-
onds, averages � 2, � � 3 milliseconds, � � 15 milliseconds,
b-value � 850 s/mm2, orthogonal b-vector directions � 3, and
b � 0. Total ADC-map data-acquisition time, which is depen-
dent on respiratory rate, was �12 minutes.

DCE MRI. DCE time-series data (preliminary, 4 test–retest
pairs) were collected with a gradient-echo multislice pulse se-
quence: TR � 47 milliseconds, TE � 1.4 milliseconds, FA 35°,
temporal resolution � 3 seconds, repetitions � 300, total scan
time � 15 minutes. At 1.5 minutes after the start of the DCE
experiment, a 100-�L bolus of 50% (V/V) Dotarem® (Guerbet
LLC USA, Princeton, NJ) in saline, �1.25 mmole/kg body
weight, was manually administrated over 3 seconds via a tail-
vein catheter.

Data Analysis
Analysis Strategies and Software. The multislice T2W images

from each mouse were used for tumor volume measurement/
segmentation with ITK-SNAP (11). ROIs were manually drawn
around each tumor, downsampled to 64 � 64, transferred to the
lower-resolution parameter maps and DCE images, and then
refined, as appropriate, using the ROI boundaries evident from
the different contrasts present in the T1, T2, and ADC maps or
DCE time course.

T1, T2, and ADC parametric maps and uncertainties were
derived with the Bayesian Toolbox (12), a data modeling soft-
ware package based upon the precepts of Bayesian probability
theory (13, 14) available for free download for noncommercial
uses (http://bayesiananalysis.wustl.edu/). These analyses were
performed in 2 different ways: (1) averaging the data and mod-
eling the combined ROI data, indicated below as 	ROI� and (2)
modeling each voxel in the ROI independently and averaging
the parameter estimates, indicated below as 	Voxel�. Al-
though not a focus of the test–retest studies herein, the spatial
parameter-maps (parameter distributions) can provide addi-
tional valuable insight in the case of heterogeneous tissues (eg,
large tumors with regions of central necrosis and hemorrhage
versus metabolically active rims), whereas the 	ROI� analysis
assumes that the voxels all represent the same underlying quan-
tity. The Bayes Toolbox “Analyze Image Pixel” package was
used for voxel-wise parameter modeling, and the “Enter Ascii
Model” package was used for ROI-averaged data modeling.

MR Signal Models. The signal models (S) used were as follows:
For T1 determination via the variable FA (�) method:

S(�) � S(Boltzmann) � (1 � exp(�TR ⁄ T1))
� sin(�) ⁄ (1 � exp(�TR ⁄ T1)) � cos(�) (1)

For T2 determination via the multispin-echo (ie, multi-TE)
method:

S(TE) � A � exp(�TE ⁄ T2) � Constant (2)

For ADC determination via 3 b-vectors (bx, by, bz) and b0, the full
tensor model was used to account for the diffusion weighting of
the imaging gradients; however, the underlying free-diffusion
model, equation (3), is valid for tissue water within the Gaussian
phase approximation regime (15):

Table 1. Pulse Sequences and Parameters

MRI

VnmrJ-4.2A:
Pulse

Sequence

2D Slice
Matrix

Size Averages
TR

(ms)
TE

(ms)

ETL (Echo
Train

Length)

Flip
Angle
(FA)

T1W Gradient Echo Multislice 128 � 128 4 100 2 – 30°

T2W Fast Spin Echo Multislice 128 � 128 4 2000 52 4 –

T2W with Fat Sat Fast Spin Echo Multislice 128 � 128 4 2000 52 4 –

T2-Map Multiecho Multislice 64 � 64 1 6000 16 � 16 – –

ADC Spin Echo Multislice 64 � 64 2 1000 23 – –

T1-Map Gradient Echo Multislice VFA 64 � 64 8 50 1.6 – 5°, 10°, 15°,
30°, 50°

DCE Gradient Echo Multislice 64 � 64 1 47 1.4 – 35°

Figure 3. Magnetic resonance imaging (MRI)
Data Acquisition Pipeline. The quantitative mul-
tiparameter protocol (tumor volume, T1- T2-, and
apparent diffusion coefficient [ADC]-maps, and
DCE) was designed to take �1 hour per subject.
Pulse sequence parameters are listed in the text
and Table 1. The DCE protocol was only per-
formed on an n � 4 subset of the n � 13 test–
retest cohort.
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S(b) � S(b � 0) � exp(�b � ADC). (3)
These signal models all share an underlying exponential char-
acter. The interested reader will find additional insight regarding
Bayesian analysis of exponentially decaying signals in (16-20).

Although the DCE findings must be regarded as preliminary
owing to the small number of paired test–retest determinations
(n � 2 � 4), each signal time-course was quantified by 2
metrics: (1) the contrast agent extravasation rate constant,
Ktrans, derived via the 3-parameter (Ktrans, Ve, Vp), 2-compart-
ment exchange model, often referred to as the extended or
modified Tofts model (21-26) and (2) the area under the time-
course curve (AUC). For compartmental exchange modeling, the
arterial input function was approximated using the reference
region (RR) approach (27-30) in which muscle is chosen as the
RR with fixed extended Tofts model parameters: RR Ktrans �
0.02 min
1 (31), RR Ve � 0.08 (31-33), and RR Vp � 0.02 (33).
The underlying RR assumption is that muscle is well perfused,
homogeneous, and responds identically to contrast agent on an
exam-to-exam and mouse-to-mouse basis. Contrast agent re-
laxivity was assigned as 5.8 mM
1s
1, vide infra. Modeling
(fitting the data) used the variable projection (VARPRO) formu-
lation of the maximum likelihood parameter estimation ap-
proach (34).

The area under the DCE time-course curve (DCE-AUC) follow-
ing contrast agent injection was calculated on a voxel-wise
basis as follows. At each time point, the signal was expressed as
the fractional enhancement in voxel intensity relative to the
precontrast period, to account for signal variations between
scans. To account for potential modest variations in the contrast
agent injection, the signal was further normalized by the max-
imum fractional enhancement in the early time frames (n �
31-120) of the lateral dorsal (lumbosacral caudal) muscle in the
5 slices covering the central portion of the tumor. The AUC was
expressed on a per-unit-time (s) basis by dividing the sum of the
normalized signal over the postinjection frames by 810 (3
s/frame � 270 postinjection frames) and, in this sense, can be
considered equal to the mean signal enhancement over the
postinjection time window.

Statistical Analysis. Standard statistical analysis—means,
medians, standard deviations (SDs), coefficients-of-variation
(CVs), Bland–Altman plots—of MR-derived parameters was per-
formed using Matlab (MathWorks, Natick, MA) and Excel (Mi-
crosoft, Redmond, WA).

As noted by Hyslop and White in their report on estimating
precision using duplicate measurements (35): “Precision is a
concept for which there is no universally accepted metric. Re-
ports of precision vary depending on the formula and inclusion

criteria used to calculate them.” Herein, we wish to express the
variability in duplicate (ie, test–retest) measurement pairs.
Therefore, in addition to Bland–Altman plots (36, 37), we pro-
vide the within-subject SD (SDws) (38) and the within-subject CV
(CVWS) (35), that is, the root-mean-square of the scaled relative
differences. In assessing test–retest results for a given MRI-
determined parameter, the absolute value of the difference be-
tween 2 paired repeat determinations is indicated by the symbol
�. The within-subject standard deviation and CVWS are then
given by equations (3) and (4):

SDWS � [(	
2)/2n]1⁄2, (4)

where the sum is taken over the number of test–retest paired
duplicate measurements (n), and

CVWS(%) � 100 � ([	(
/m)2]/2n)1⁄2, (5)

in which m is the mean of the 2 paired repeat determinations
whose absolute difference is �, and the sum is taken over the n
test–retest paired duplicate measurements.

The width of each voxel-wise parameter distribution is sum-
marized as the “SD of the parameter distribution.” In this case, �
for the distribution width test–retest (the difference between the
standard deviations of the voxel-wise parameter distributions) is
indicated by the symbol �DW.

In addition to metrics quantifying precision, assessing tes-
t–retest bias (significant difference from zero) is also of in-
terest (Bland–Altman plots, vide infra). The 95% confidence
interval for mean test–retest difference 	d� was assigned as
	d� � (t � SEM) where t is the value of the t distribution
with n 
 1 degrees of freedom and SEM is the standard error
of 	d� (36, 37).

RESULTS
Phantoms

Protocol Assessment via Single-Compartment Phantom
Sample. As expected, even with removal and repositioning of
the phantom between measurements, the parameter variability
across consecutive determinations of T1, T2, and ADC in the
single-compartment homogeneous phantom was small
(Table 2). CVs for 	ROI� parameter values (n � 5) were 2.6, 3.7,
and 3.9% for T1, T2, and ADC, respectively. Similar mean, SD,
and CV values resulted from 	ROI� and 	Voxel� analysis. As
will be seen, the phantom T1 and ADC CVs, whether 	ROI� or
	Voxel� based, are smaller (�1.5 to 4.2�) than those obtained
for PDX in vivo, while the phantom T2 CVs are somewhat larger
(�1.4�) than observed for PDX in vivo.

Table 2. Single-Compartment Phantom Test–Retest Variability

Parameter Spectroscopy True Value Mean SD CV (%) Bias (%)

T1	ROI�, sa

0.921 � 0.04
0.85 0.02 2.6 
7.8

T1	Voxel�, sb 0.86 0.03 3.4 
6.7

T2	ROI�, msa

54 � 3
52.1 1.9 3.7 
2.6

T2	Voxel�, msb 52.2 1.9 3.5 
2.8

ADC	ROI�, �m2/msa

3.1 � 0.1
3.0 0.1 3.9 
1

ADC	Voxel�, �m2/msb 3.0 0.1 3.9 
3.3

a<ROI>: Results from modeling averaged data from the entire phantom ROI over all five measurement repeats.
b	Voxel�: Results from modeling each phantom voxel independently and summarized over the five measurement repeats.
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In addition to measurement precision, phantom samples offer
an opportunity to assess accuracy (bias). MR spectroscopy–
based measurements in the absence of imaging gradients pro-
vided “true value” determinations of T1, T2, and ADC for the
single-compartment homogeneous phantom. The image-based
determinations were within 8%, 3%, and 3% of the true value
determinations for T1, T2, and ADC, respectively.

Six-Compartment Variable Relaxation Phantom. The 6-com-
partment phantom contained homogeneous compartments,
with T1 and T2 values bridging the expected range encountered
for various tissues and over the DCE time course (Table 3).

Aqueous Mn2� relaxivities (r1, r2) derived from these data
(201.5 MHz; 37°C) via equation (5) were r1 � 5.8 � 0.3 mM
1s
1

(R2 � 0.99) and r2 � 166 � 14 mM
1s
1 (R2 � 0.98).

R1,2([Mn2�]) � R1,2([Mn2�] � 0) � r1,2 � [Mn2�] (6)

Using the DCE pulse-sequence parameters, the FA was varied to
map signal (contrast) changes between compartments with dif-
fering T1 in the 6-compartment phantom. Conceptually, for an
anticipated range (dynamic) of T1s, selection of the “optimal”
FA will depend upon 2 competing/opposing considerations,
with a desire to obtain: (1) the greatest T1-dependent signal
amplitudes (ie, SNR) and (2) the greatest difference in T1-depen-
dent signal amplitudes (ie, image contrast) for tissues with
different T1s. Thus, the optimal/ideal FA would provide (1)
maximal signal (tissue detectability) and (2) maximal tissue
contrast (tissue differentiation) between tissues with different
DCE time-course profiles. (We recognize that the dynamics of
the time course itself provide a second contrast mechanism.) We
qualitatively weighted these 2 factors equally for T1 values most
representative of what would be anticipated for the various
tissues in the FOV during the DCE time course. Although the
region of optimality is rather broad, a nominal FA of 35° was
selected for the in vivo PDX DCE protocol. This choice is at
the upper end of the 25°–35° FA range recommended by
the Quantitative Imaging Biomarkers Alliance (QIBA), but
herein a contrast agent dose is leveraged that is substantially
greater (�10�) than QIBA suggests for clinical studies (39)
(Figure 4).

In Vivo TNBC PDX MRI
PDX Cohort MRI-Determined Parameter Summary. Represen-

tative parameter maps for T1, T2, ADC, and DCE-AUC are shown

in Figure 5 for a single transaxial slice through the center of the
tumor for a single mouse. Characteristics of the entire cohort are
summarized in Table 4. Citing parameter 	ROI� values, which
were similar to parameter 	Voxel� values, tumor volume
ranged from 31 to 318 �L with a mean � SD of 174 � 73 �L; T1
ranged from 1.4 to 2.3 seconds with a mean of 1.9 � 0.2
seconds; T2 ranged from 56 to 68 milliseconds with a mean of
62 � 3 milliseconds; ADC ranged from 0.59 to 0.83 �m2/ms
with a mean of 0.71 � 0.06 �m2/ms; DCE-Ktrans ranged from
0.01 to 0.06 min
1 with a mean of 0.025 � 0.015 min
1; and
DCE-AUC ranged from 0.18 to 1.4 au with a mean of 0.77 � 0.30
au.

Dependence of MRI-Determined Parameters on PDX Volume.
Small-animal tumor models often use tumors in the 1- to 2-cm
range. Approximating the tumor as a sphere of water, a 1-cm-
diameter tumor would have a volume of 0.52 mL or �2.6% by
weight of a 20-g mouse; a 2-cm-diameter tumor would have a
volume of 4.2 mL or �20% by weight of a 20-g mouse. Such

Table 3. T1 and T2 Determinations with the 6-Compartment Variable Relaxation Phantom

MnCl2 Sample
Concentration IR MRSa

VFA (5 FA)
<Voxel>b

VFA (18 FA)
<Voxel>b SE MRSc

ME 16 TEs � 16 ms
<Voxel>d

mM
Mean T1,

s, (SD) n � 5
Mean T1,

s, (SD)
Mean T1,

s, (SD)
Mean T2,

ms, (SD) n � 5
Mean T2,
ms, (SD)

0.0125 3.63 (0.01) 3.1 (0.5) 3.2 (0.3) 483 (2) 250 (30)

0.025 2.74 (0.01) 2.6 (0.3) 2.6 (0.2) 281 (3) 210 (20)

0.050 2.14 (0.01) 2.0 (0.2) 2.0 (0.1) 189 (6) 140 (9)

0.10 1.75 (0.01) 1.2 (0.1) 1.2 (0.1) 113 (2) 79 (4)

0.20 0.744 (0.003) 0.77 (0.07) 0.75 (0.04) 41.0 (0.4) 45 (3)

0.40 0.399 (0.005) 0.42 (0.03) 0.41 (0.02) 15.0 (0.3) 23 (2)

aInversion-recovery (IR) MR spectroscopy (MRS) measurements of T1.
bVariable flip angle (VFA) T1 measurements across all phantom voxels with either 5 or 18 flip angles (FA).
cSpin-echo (SE) MRS measurements of T2.
dMulti-(Spin)-echo (ME) measurements of T2 across all phantom voxels.

Figure 4. Exploring DCE with the 6-compartment
relaxation phantom. Plots of the signal intensity of
each tube as a function of flip angle (FA). The T1
values (Table 3) were chosen to bridge the ex-
pected range for tissues in vivo and during the
DCE experiment.
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“large” tumors in small-animal models are often quite hetero-
geneous, with substantially necrotic and hemorrhagic centers
and rims that remain metabolically active with continued
growth. These characteristics are not generally representative of
human breast tumors diagnosed in the clinic, where TNBC most
commonly presents as a mass on mammography, most fre-
quently round, oval, or lobular in shape, with indistinct margins,
and no associated microcalcifications, irregular spiculated
masses, or pleomorphic microcalcifications (40). The tumors

used for the test–retest studies herein averaged 0.174 � 0.073
mL in volume, representing 	1% of the mouse’s weight (�20 g).

We note in passing that size comparisons are relative. Human
female breast tumors range from barely detectable to 5 cm and
larger. Typical human female breast volume is �550 mL,
roughly a pound. Approximating the tumor as a perfect sphere
of water, a 5-cm tumor would have a volume of 65 mL or 12%
of the typical human breast volume or weight. The weight of the
mouse fourth inguinal fat pad is �50 � 10 mg (mean � SD, n �

Table 4. PDX Cohort MRI-Determined Parameter Summary

Parameter Mean Median SD Range

Volume, �L 174 177 73 31–318

Volume, �L, for DCE subset 235 249 62 145–299

T1 	ROI�, sa 1.86 1.88 0.22 1.4–2.3

T1 	Voxel�, sb 1.92 1.93 0.24 1.4–2.4

T2 	ROI�, msa 62 61 3.0 56–68

T2	Voxel�, msb 62 62 7.4 56–68

ADC	ROI�, �m2/msa 0.71 0.71 0.06 0.59–0.83

ADC	Voxel�, �m2/msb 0.73 0.73 0.08 0.59–0.88

DCE-AUC	ROI�, aua 0.77 – 0.30 0.18–1.4

DCE-AUC	Voxel�, aub 0.77 0.70 0.30 0.18–1.4

DCE-Ktrans 	ROI�, min
1 a 0.025 – 0.015 0.01–0.06

DCE-Ktrans 	Voxel�, min
1 b 0.035 0.027 0.031 0.00–0.10

aThe test and retest measurements were averaged and are summarized over all mice (n � 13 for T1, T2, ADC; or n � 4 for DCE-AUC, DCE-Ktrans).
b	ROI� measurements from modeling the averaged data over the entire tumor volume.
c	Voxel� measurements from modeling each tumor voxel independently, averaging across repeats, and summarized across all animals.

Figure 5. Representative PDX T2-
weighted (T2W) images and mag-
netic resonance (MR) parametric
maps. T2W (A), T2W-FatSat (B),
T1 (C), T2 (D), ADC (E), and DCE-
AUC (F) parametric maps from a
single central slice through a
206-�L tumor. T2W image intensity
scaling is arbitrary. Parametric map
intensities are given by vertical
scale bars. The tumor is outlined
with a yellow line. Isolated white or
black voxels (specks) generally oc-
cur in anatomic regions of very low
signal-to-noise ratio (SNR) under the
protocol conditions and thus reflect
a modeling (parameter estimation)
failure. The hyperintense T2W fat
signal is a known artifact of the fast
spin-echo (FSE) protocol (45-47).
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4). Thus, although only 30 �L (�30 mg) of TNBC cells was
implanted into the mouse mammary fat pad, the tumors used in
our report had grown to a mean weight corresponding to 3.5�
the mammary fat pad weight.

The dependence of MR parameters on PDX volume over the
range of volumes examined (31–318 �L) was minimal and
generally not statistically significant. There are only 2 statisti-
cally significant trends with increasing PDX volume: (1)
T1	Voxel� showed a small decrease (
0.002 s/�L), as did (2)
the voxel-wise T1 distribution width, as given by T1-
CV	Voxel� (
0.03%/�L). Whether the weak dependence of
these parameters on PDX volume reflects physiologic or mi-
croenvironment changes as tumors grow is unclear. The depen-
dency may simply reflect the greater measurement precision/
accuracy afforded by larger tumor volumes.

PDX MRI-Determined Parameter Test–Retest Variability
Test–retest variability in MRI-determined parameters is summa-
rized in Table 5. Further assessment of DCE test–retest variabil-
ity was not undertaken owing to the small number of paired DCE

measurements (n � 4 � 2) and the substantial CVWS observed,
the genesis of which remains to be ascertained.

Figure 6 shows the full ROI test–retest T1-, T2-, and ADC-
normalized voxel-wise distribution plots for the tumor dis-
played in Figure 5. The degree of test–retest voxel-wise distri-
bution congruence shown is broadly representative of all 13
test–retest T1, T2, and ADC determinations. Bland–Altman plots
(36, 37) are shown in Figure 7 for tumor volume and T1, T2, and
ADC 	ROI� means and in Figure 8 for voxel-wise distribution
widths (voxel-wise SDs).

As anticipated, there is good concordance between tumor
	ROI� and 	Voxel� parameter mean test–retest results. Test–
retest CVWS values are the smallest for tumor-volume determi-
nation, �1%, and then scale as T2 	 ADC � T1 		 DCE-AUC
and DCE-Ktrans. Clearly, the DCE-AUC and DCE-Ktrans test–
retest determinations showed the greatest variation of all the
MRI parameter determinations, with CVWS in the 30%–40%
range.

Table 5. PDX Cohort MRI-Determined Parameter Test–Retest Within-Subject Variability

Parameter Mean �a SDWS �a Mean �DW
b SDWS �DW

b CVWS �a (%) CVWS �DW
b (%)

Volume, �L 1.7 1.5 – – 0.94 –

T1	ROI�, s 0.24 0.21 – – 11 –

T1	Voxel�, s 0.18 0.16 0.06 0.05 8.6 22

T2	ROI�, ms 1.8 1.6 – – 2.6 –

T2	Voxel�, ms 1.8 1.6 1.7 1.6 2.5 20

ADC	ROI�, �m2/ms 0.05 0.05 – – 7.0 –

ADC	Voxel�, �m2/ms 0.05 0.04 0.03 0.03 5.8 16

DCE-AUC	ROI�, au 0.17 0.17 – – 29 –

DCE-AUC	Voxel�, au 0.17 0.17 0.15 0.11 29 33

DCE-Ktrans	ROI�, min
1 0.012 0.013 – – 32 –

DCE-Ktrans	Voxel�, min
1 0.017 0.016 0.012 0.01 44 28

aThe symbol � indicates the absolute value of the difference between two paired repeat determinations.
bThe width of each voxel-wise parameter distribution is summarized as the SD of the parameter distribution. In this case, � for the distribution width
test-retest is indicated as �DW.

Figure 6. Representative PDX
test–retest full ROI-normalized
voxel distribution plots. For the
same 206-�L tumor shown in Fig-
ure 5, the test–retest-normalized
voxel distributions for maps of T1
(A), T2 (B), and ADC (C) are
overlaid to provide a visual rep-
resentation of measurement repro-
ducibility. Quantitative test–retest
summary statistics for the entire
cohort are listed in Table 5.
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DISCUSSION
Longitudinal monitoring of quantitative MRI parameter sum-
mary statistics (and, ultimately, voxel-wise distribution charac-
teristics) as indices for predicting and assessing tumor therapeu-
tic response requires knowledge of the test–retest precision of
such metrics. In the clinic, initiating and modifying therapeutic
intervention based on MRI metrics require knowledge of when
an observed change in an MRI parameter(s) is likely to be
significant. Supported through the National Cancer Institute
Co-Clinical Imaging Resource Program initiative, this work is
the first step toward such assessment with TNBC PDXs im-
planted in abdominal mammary fat pads. The measurement is
challenged by the SNR achievable in a �60-minute multicon-
trast scanning protocol and by residual subject respiratory mo-
tion.

Herein, to suppress respiratory motion, several strategies
have been used, including: (1) a half-cylindrical mouse cradle
whose inner diameter is optimized for a snug fit with the mouse
lying on its side, (2) a modified ridged plastic panel (10) to
restrict respiratory motion to the chest area, away from the
lower abdomen, (3) a judicious use of body taping to reduce
residual motion (see Figure 1), and (4) for ADC mapping, where
sensitivity to motion is extreme, respiratory gating of the data
collection. The 2D slice-selective DCE protocol is particularly
sensitive to motion, resulting in slice positional changes that
disrupt the steady-state magnetization condition. This is graph-
ically illustrated in Figure 2 for the cases of poor versus good
motion control as achieved herein.

Obtaining sufficiently high SNR and spatial resolution is
always challenging in MR imaging of mice, whose body volume
is �3,000-fold less than that of the adult human. Although high
magnetic fields and small-diameter RF receiver coils improve
sensitivity, one is always faced with decisions regarding the
trade-off of SNR versus spatial resolution versus data-acquisi-
tion scan time. Because our PDX-bearing mice experience un-
avoidable physiological stress, including therapy and repeated
anesthesia and handling for MRI scanning, a 1-hour multicon-

trast scanning protocol was developed to provide sufficient
throughput, SNR, and spatial resolution, while minimizing time
under anesthesia. In addition, it was recognized that on a mod-
ern preclinical MRI scanner, image analysis often poses the more
time-consuming component. Thus, to maximize throughput,
standard multislice, Cartesian k-space-encoding pulse sequence
protocols were used.

The range of FA and TE parameters used to collect the T1
and T2 data in the 2 phantoms was the same as used for the
PDXs. The multiecho T2 measurement is time-efficient, and
thus, the number of echoes (TE � �16 milliseconds) was set at
16 to quantify tissues with long T2 values (eg, bladder) in the
FOV. The variable FA T1 measurement is not as time-efficient.
The use of 5 FAs was found to provide moderately decreased,
though sufficient, precision in T1 determination compared with
the use of 18 FAs. As expected, the multiecho T2 measurement
was the most accurate and precise when multiple e-foldings of
the signal decay were captured by multiple echoes. At the
extremes of long and short T2s examined in the 6-compartment
phantom, the multiecho pulse sequence parameters that were
used for in vivo PDX were far from optimal.

Tumor MRI parameter determinations showed different tes-
t–retest sensitivities to inevitable protocol nonidealities. T2W
anatomical scanning is time-efficient and provides high spatial
resolution and good tumor-to-background contrast. Thus, tu-
mor volume determination via multislice T2W MRI was highly
robust, with a �1% test–retest CVWS. T2-map determination
using a multislice, multiecho protocol is also time-efficient and
relatively insensitive to modest imperfections in pulse and
transmit RF-fields. Thus, T2-map determinations were also ro-
bust, with a �3% test–retest CVWS (mean value over the tumor
volume). The variable FA T1-map determination is sensitive to
transmit RF-field imperfections, which results in a nonuniform
FA over the FOV, and it suffers from limited dynamic range and
SNR relative to more time-consuming (eg, inversion recovery)
T1 protocols. In principle, the effect of transmit RF field imper-
fections can be mitigated by including a B1-field mapping

Figure 7. Bland–Altman plots for
the test–retest cohort 	ROI�
Analysis. The 	ROI�-determined
mean of test and retest parameter
values (x-axis) and difference in
test and retest parameter values
(y-axis) are shown for each tumor
(volume (A), T1 (B), T2 (C), ADC
(D)), together with overall mean of
the test–retest differences (green
lines) and 95% confidence limits
(red and blue lines). Apparent
biases were not statistically signifi-
cant (P � .05).
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protocol. This was not done herein because a transmit volume
coil was used that produced a relatively homogeneous B1 field
over the tumor volume. Nevertheless, despite these sensitivities
to protocol imperfections, the T1-map determination was rela-
tively robust, with a �9%–11% CVWS (mean value over the
tumor volume).

The ADC map determination is sensitive to respiratory mo-
tion and the limited SNR at high b-values. Using lower b-values
provides higher SNR at the expense of reduced dynamic range.
Bito et al. (41) showed that the optimal b-value for a single ADC
is that which results in �1 e-folding in the diffusion signal
decay (ADC � b-value � � 1). However, tissue ADC values
vary depending upon tissue characteristics. Thus, providing
good-quality ADC-map contrast between the PDX and sur-
rounding abdominal tissues with different ADC values is also
desired. Koc and Erbay (42) evaluated optimal b-values for
differentiation of abdominal lesions and recommended val-
ues of 600 s/mm2 or higher. We anticipate animals in the
second part of the coclinical trial, which will monitor PDX
growth and therapeutic response, will ultimately be bearing
substantially larger PDX with fluid-enriched necrotic regions
(higher ADCs). Thus, we qualitatively chose a b-value of 850
s/mm2, somewhat higher than the recommended 600 s/mm2,
to bridge between the ADCs for the more cellular-dense
versus necrotic fluid-rich tissues. The resulting ADC maps
showed a �6%–7% CVWS (mean value over the tumor vol-
ume).

The DCE protocol used herein was designed to provide
strong DCE signal under high temporal resolution (3-second
frames). In early exploratory studies, it was found that low doses
of contrast agent provided low DCE SNR. The dose was adjusted
to provide high DCE SNR, but not such a large dose as to induce
DSC-like T2* effects with the short echo time (�1.6 millisec-
onds) used. At the dose used, a strong muscle DCE signal was
observed, useful for normalization regarding AUC and RR AIF
estimation regarding Ktrans, and no apparent, frank effects on
renal contrast agent clearance and vascular function were ob-
served. Specifically, the “DCE signal” was near baseline at 1–2 h
post administration.

While DCE findings should be considered preliminary ow-
ing to the small number of paired test–retest determinations, by
far the least robust were the DCE-AUC and DCE-Ktrans determi-
nations, yielding �30%–40% CVWS. The reason for this is un-
clear, but substantial DCE variability is a common finding (39,
43, 44). It seems unlikely that significant residual contrast agent
remained in the tumor following the �16- to 20-h period be-
tween the paired test–retest determination, as the T1-maps did
not show substantive test–retest bias. The DCE paired test–retest
determination was carried out in the afternoon versus morning
of consecutive days, and it is possible that animals were in
different metabolic/physiologic states related to their normal
diurnal cycle. No attempt was made to control for this. Contrast
agent was administered via manual injection into the tail vein
through catheters that were placed by a highly experienced
small-animal procedure technologist. While a power injector
might improve somewhat on within-animal bolus uniformity,
the injected volumes were small and not highly variable. Fur-
ther, the tumor DCE-AUC normalization to the maximum mus-
cle DCE enhancement in the early time frames and the reference
RR AIF estimation regarding Ktrans should have substantially
mitigated effects of injection variability. Thus, while the genesis
of the large CVWS observed with tumor DCE determinations

Figure 8. Bland–Altman plots for the test–retest
cohort 	Voxel� analysis. The voxel-wise-deter-
mined mean of test and retest parameter values
(x-axis) and difference in test and retest parameter
values (y-axis) are shown for each tumor (T1 (A),
T2 (B), ADC (C)), together with the overall mean
of the test–retest differences (green lines) and 95%
confidence limits (red and blue lines). Apparent
biases were not statistically significant (P � .05).
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remains unclear, it does motivate additional experiments with
control-state (nontumor bearing) mice, and this will be the
subject of future investigations.

CONCLUSION
Determination of PDX volume via manually drawn ROIs is
highly robust, with a �1% test–retest CVWS. Mean T2 is also
a robust determination, with a �3% test–retest CVWS. Mean

T1 and ADC are less robust, with test–retest CVWS in the
�6%–11% range. The least robust, in a test–retest sense, are
the DCE-AUC and DCE-Ktrans, with test–retest CVWS in the
�30%–40% range.

Ongoing work will assess methods to further quantify the
shape/character of the voxel-wise parameter distributions (ie,
methods of histogram analysis) and the robustness of these
measures to test–retest evaluation.
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