19,899 research outputs found

    Cycled operation of water vapor electrolysis cell Annual report, 1 Jan. - 31 Dec. 1969

    Get PDF
    Mathematical model of heat, mass, and momentum relationships in cyclic operation of water vapor electrolytic cell, and equilibrium conditions between gel matrix and vapo

    Effective Operators for Double-Beta Decay

    Get PDF
    We use a solvable model to examine double-beta decay, focusing on the neutrinoless mode. After examining the ways in which the neutrino propagator affects the corresponding matrix element, we address the problem of finite model-space size in shell-model calculations by projecting our exact wave functions onto a smaller subspace. We then test both traditional and more recent prescriptions for constructing effective operators in small model spaces, concluding that the usual treatment of double-beta-decay operators in realistic calculations is unable to fully account for the neglected parts of the model space. We also test the quality of the Quasiparticle Random Phase Approximation and examine a recent proposal within that framework to use two-neutrino decay to fix parameters in the Hamiltonian. The procedure eliminates the dependence of neutrinoless decay on some unfixed parameters and reduces the dependence on model-space size, though it doesn't eliminate the latter completely.Comment: 10 pages, 8 figure

    Monte-Carlo simulations of photohadronic processes in astrophysics

    Get PDF
    A new Monte Carlo program for photohadronic interactions of relativistic nucleons with an ambient photon radiation field is presented. The event generator is designed to fulfil typical astrophysical requirements, but can also be used for radiation and background studies at high energy colliders such as LEP2 and HERA, as well as for simulations of photon induced air showers. We consider the full photopion production cross section from the pion production threshold up to high energies. It includes resonance excitation and decay, direct single pion production and diffractive and non-diffractive multiparticle production. The cross section of each individual process is calculated by fitting experimental data, while the kinematics is determined by the underlying particle production process. We demonstrate that our model is capable of reproducing known accelerator data over a wide energy range.Comment: 39 pages, 17 figures, submitted to Comp.Phys.Co

    Self-consistent Skyrme QRPA for use in axially-symmetric nuclei of arbitrary mass

    Full text link
    We describe a new implementation of the quasiparticle random phase approximation (QRPA) in axially-symmetric deformed nuclei with Skyrme and volume-pairing energy-density functionals. After using a variety of tests to demonstrate the accuracy of the code in ^{24,26}Mg and ^{16}O, we report the first fully self-consistent application of the Skyrme QRPA to a heavy deformed nucleus, calculating strength distributions for several K^pi in ^{172}Yb. We present energy-weighted sums, properties of gamma-vibrational and low-energy K^pi=0^+ states, and the complete isovector E1 strength function. The QRPA calculation reproduces the properties of the low-lying 2^+ states as well or better than it typically does in spherical nuclei.Comment: 5 pages, 6 figure
    corecore