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1. Setting the Scene

Writers on the business cycle and forecasting often emphasize that non-linear
models are needed to account for the former phenomenon and to improve the
latter. On the business cycle front it is often said that either the asymmetry
of the duration of business cycle expansions and contractions or the variability
of these quantities demand a non-linear model. Such comments are rarely made
precise however and mostly consist of references to such assertions from the past.
Thus the asymmetry in the cycle is mostly accompanied by references to Keynes
(1936) and Burns and Mitchell (1946). But these authors were looking at what
we call today the “classical ”cycle i.e. movements in the level of GDP, and so
the fact that there are long expansions and short contractions can arise simply
due to the presence of long-run growth in the economy. It seems possible that
there is little asymmetry left over once one has accounted for the consequences
of long-run growth. If so there would be little contribution to the explanation of
this phenomenon from using a non-linear statistical model of the cycle.
In this paper we subject this view that non-linear models are important to an

explanation of business cycles to some critical analysis. In section 2 we discuss
ways of measuring the characteristics of the business cycle and discuss which
features of the U.S. cycle cannot be reproduced by a linear model. Section 3 then
utilizes data on US GDP to consider the characteristics of cycles generated by
three non-linear models that have recently been proposed.

1. The SETAR model of van Dijk and Franses(2003)

2. The bounceback model of Kim, Morley and Piger (2002)

3. The tension index model of De Jong, Liesenfeld and Richard (2003).

In each case we measure how much each of these models contributes to the
explanation of the primary features of the business cycle. We regard the latter as
being

1. Asymmetries of phases.

2. The shape of phases.

3. The variability of phases.

4. The nature of the transition between phases.
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We find that the non-linear models add little to the explanation for the asym-
metry of phases, provide a little of the explanation of the shape of phases, have
the potential to explain why expansions are actually less variable in the data than
predicted by linear models, and, finally, that the use of these non-linear models
does not provide a better explanation of the transition between phases than that
available from linear models. Indeed, one might well argue that it is worse. In the
latter context we introduce the idea of separating out the influence on the busi-
ness cycle of contemporaneous shocks from lagged ones. Effectively this gives us a
measure of how much of the cycle is due to unpredictable events from those that
are predictable owing to their dependence on the past. Technically this decom-
position might be regarded as isolating the role of impulses and the propogation
mechanism in producing a cycle. By eliminating the influence of an unknown ex-
ogenous event, the current shock, it may also provide some insight into the ability
to forecast cyclical developments.

2. Measuring the Cycle

2.1. The Average Cycle

Much of our discussion of business cycle features will be assisted by Figure 1
which shows a stylized recession. There is an equivalent one for expansions. Here
the y axis is yt (the log of the level of economic activity, Yt) and the x axis
is time. Thus the graph shows a peak at A and a trough at C. The length
of AB is the duration of the recession and the vertical distance between A and
C is the amplitude of the cycle, effectively expressed as a fraction of the peak,
since it is the difference logYC − log YA. Once we know where the turning points
are located in time, we can compute these measures. The method we will use
is the BBQ algorithm of Harding and Pagan (2002). It was shown in Harding
and Pagan (2003) that this rule provides a good reproduction of the turning
points in the US cycle selected by the NBER, as one might expect from the
comments by the NBER Business Cycle Dating Committee in dating the turning
points of the 2001 recession -see “The NBER’s Recession Dating Procedure” at
http://www.nber.org/cycles/recessions.html.
In the BBQ algorithm turning points in the business cycle at time t are defined

in the following way.
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peak at t = {(yt−2,yt−1) < yt > (yt+1, yt+2)}
(2.1)

trough at t = {(yt−2,yt−1) > yt < (yt+1, yt+2)}.

These definitions could be re-expressed as

peak at t = {(∆2yt,∆yt) > 0, (∆yt+1,∆2yt+2) < 0}
(2.2)

trough at t = {(∆2yt,∆yt) < 0, (∆yt+1,∆2yt+2) > 0}

where ∆2yt = yt − yt−2. In words, a recession occurs if the level of economic
activity declines for over a single quarter as well as over a six monthly period, while
an expansion needs increases over the same intervals. In practice, the Bry and
Boschan (1971) algorithm from which BBQ was derived also applied some extra
censoring procedures to the dates that emerged from using the above rule. In
particular, the contraction and expansion phases must have a minimum duration
of six months and a completed cycle must have a minimum duration of fifteen
months. We emulate this by imposing two quarter and five quarter minima on
the phase lengths and complete cycle duration respectively. Another important
operation in BBQ is to ensure that peaks and troughs alternate. When this
does not happen the excess ones must be eliminated by choosing between them
with rules such as selecting the date with the lower (higher) value of yt for troughs
(peaks). This form of censoring is extremely important in Monte Carlo simulations
and great care has to be taken to ensure that it is properly applied when dating
cycles with simulated data. In this paper we have used an extensively re-written
version of the program employed in Harding and Pagan (2002) in order to ensure
that the alternation is performed accurately. Some differences have emerged to
those reported previously.
Let the turning point dates produce K expansions and contractions with the

duration of the i0th (i = 1, ..., K) expansion being DE
i and that of the contractions

being DC
i . Then, dropping the i subscript, the quantities summarizing durations

of the average phases will be

D
E
=
1

K

KX
i=1

DE
i , D

C
=
1

K

KX
i=1

DC
i .
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Generally these refer to completed durations i.e. if the expansion ( contraction)
is still on-going at the end (beginning) of the sample period it will not be counted
when computing the average. It is also possible to produce the same measures
A
E
and A

C
for the amplitudes of the phases of the average cycle.

But the graph shows that there are other things we might like to measure.
One of these is the cumulated gain or loss during a phase i.e. the area under the
curve that describes the actual path for the log of GDP. This is measured by (see
Harding and Pagan (1992))

F =
DX
j=1

(yj − y0)−
A

2
.

A useful comparison can be made of F with the area of the triangle ABC (AR =
D×A
2
) and the quantity we use for this is the excess area

E =
F −AR

D
.

This shows how much extra output per quarter is gained or lost during an expan-
sion or contraction as compared to the situation if the economy had expanded or
contracted at a constant growth rate. It is computed for both phases, although it
is unlikely to be very reliable for contractions, as these are very short.

2.2. The Diversity of Cycles

It is also possible to compute all the characteristics mentioned above for the aver-
age cycle for each individual cycle. But this produces a large amount of informa-
tion that is hard to readily compare with the equivalent quantites from simulated
data. Consequently we seek some summary characteristics of the diversity of cy-
cle outcomes. Simple indices of this type come from coefficients of variation, in
particular the ratio of the standard deviation of the durations and amplitudes to
their means. Thus, for durations we have

CV E
D =

q
( 1
K

PK
i=1(D

E
i −D

E
)2)

1
K

PK
i=1D

E
i

CV C
D =

q
( 1
K

PK
i=1(D

C
i −D

C
)2)

1
K

PK
i=1D

C
i

The same quantities can be computed to measure the variability of amplitudes.
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2.3. The Transition Between Phases

It will prove useful to think about the rules above as marking a move from one
phase (state) to another. Thus a peak at time t demarcates a state of expansion
at time t, St = 1, from a state of contraction at time t+1, St+1 = 0. The states St
are then a binary Markov process which can be summarized with the transition
probabilities Pr(St+1|St). As we will see later, examination of these quantities will
prove to be fruitful.
In fact it is hard to analytically derive the transition probabilities for the BBQ

rule. A rule that is close to it and which is amenable to analysis is that two
periods of negative (positive) growth after a point in time t, when an expansion
(contraction) held at t, initiates a contraction (expansion). When yt follows a
randomwalk with drift, the transition probabilities coming from application of this
modified rule can be shown to depend only upon St−1, with no further dependence
on ∆yt−1. But most GDP series have serial correlation in their growth rates. To
gain some appreciation of how this is likely to affect transition probabilites we use
a simple dating rule that has been called the calculus rule in which the phases
are defined as St = 1(∆yt > 0) i.e when there is a positive growth rate at time t,
the economy is an expansion (E) state while a negative one signifies a contraction
(C). Now, if ∆yt = µ + σet, where et is i.i.d.(0, 1), then the probabilities of a
change in phase at time t would be

Pr(EC) : Pr(St+1 = 0|St = 1) = Pr(∆yt+1 < 0|∆yt > 0)

Pr(CE) : Pr(St+1 = 1|St = 0) = Pr(∆yt+1 > 0|∆yt < 0),

where P (EC) is the probability of a switch from an expansion to a contraction
state etc. Let us look at Pr(EC) which, in this context, has the form

Pr(∆yt+1 < 0|∆yt > 0) = Pr(µ+ σet+1 < 0|∆yt > 0)

= Pr(et+1 < −
µ

σ
)

due to the independence of ∆yt. If et was N(0, 1) then we would have Pr(EC) =
Φ(−µ

σ
) = ψ and Pr(CE) = 1 − Φ(−µ

σ
), where Φ is the distribution function of

an N(0, 1) random variable. So the probability of a turning point depends solely
upon µ

σ
i.e. the ratio of long-run growth to the volatility of shocks. The modified

rule discussed above is also found to produce transition probabilities that depend
solely upon µ

σ
.

Now consider what happens when there is serial correlation in the growth rates
of output i.e.
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∆yt = µ+ ρ∆yt−1 + σet

where et is n.i.d.(0, 1). Then we can write the transition probability P (EC) as

Pr(∆yt < 0|∆yt−1 > 0) = Pr(µ+ ρ∆yt−1 + σet < 0|∆yt−1 > 0)

= Pr(et < −a− φ∆yt−1|∆yt−1 > 0)

=

Z ∞

0

[

Z −α−φz

−∞

1√
2π
exp(−1

2
e2)de)]dz (2.3)

=

Z ∞

0

Φ(−α− φz)dz,

where Φ(·) is the cumulative standard normal, α = µ
σ
, φ = ρ

σ
and z = ∆yt−1. Now

consider the derivative of Φ(−α− φz) with respect to φ. From Liebniz’ rule this
is

− 1√
2π
exp(−1

2
(−α− φz)2)z

and so a rise in φ (given φ > 0) will cause a decline in the probability of moving
from an expansion to a contraction. This makes sense given that positive serial
correlation in the growth rate (∆yt−1) makes it more likely that ∆yt will be of
the same sign, and so the expansion state is likely to be preserved. To map this
into the length of an expansion is more complex however. As Harding and Pagan
(2002, p373) show

Pr(St = 1) =
Pr(CE)

Pr(EC) + Pr(CE)

and, from the arguments above, P (CE) would also decline with rises in φ, since
negative growth rates would likely be perpetuated. The upshot of such consideras-
tions will be that the effect of serial correlation in growth rates upon the length
of expansions is likely to be indeterminate.
From the analysis above we would expect that the probability of switching from

an expansion to a contraction state depends upon the magnitude of ∆yt−1 for any
dating rule.When there is a small positive growth rate observed during t−1 there
is a bigger chance of a switch to a recession phase than if the∆yt−1 had been larger.
This is sensible due to the positive serial correlation and it points to the fact that
it will be useful to look at how P (EC) (or its equivalent P (EE) = 1 − P (EC))
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will vary with ∆yt−1 in the data and with different models. In passing, it should
be noted that it has often been said that a turning point rule does not enable
one to predict the change in state, and the preceding analysis shows that to
be a fallacy. Of course it may not be easy to determine the mapping between
the conditional probability and ∆yt−1 when there are more realistic DGP’s and
dating rules. Later we will use non-parametric estimation methods to compute
the transition probabilities for many models for which analytic solutions are not
readily available.
One also has to give some thought as to what conditional probability should

be analysed. It is natural to think of Pr(St|St−1,∆yt−1), but this may be less
useful than it would appear to be when the dating rule is the BBQ one. To see
why, suppose we try to find how Pr(St|St−1 = 1,∆yt−1) varies with ∆yt−1 when
the BBQ rule is used. The fact that St−1 = 1 means that the expansion did not
terminate in t− 2. This puts constraints on the relation between yt, yt−1 and yt−2.
There are a number of these but one that is particularly relevant occurs when
yt−1 < yt−2. When such growth eventuates, in order to ensure that a peak does
not occur at t− 2 it will be necessary that yt > yt−2 i.e. we must have

{∆yt−1 < 0,∆yt > 0 > |∆yt−1|}

Now consider what happens if we experiment with a negative value for ∆yt−1
but St−1 = 1. As just seen this means that a positive value for ∆yt is necessary.
But, if that happens, it is impossible for St = 0, since the positive value for ∆yt
means that yt > yt−1 and so one cannot satisfy the criterion for a peak at t − 1
ie St 6= 0. Such an outcome would not arise with the calculus rule. It occurs with
the BBQ rule since knowledge about St−1 and ∆yt−1 implies some knowledge of
future growth outcomes. In a prediction environment the simplest way to avoid
the constraints which arise from the use of the BBQ determined dates is to work
with Pr(St|St−2,∆yt−1), since then we are not using any information about ∆yt.
Consequently, in later work we use Pr(St|St−2 = 1,∆yt−1) to compare models of
the cycle.
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3. Accounting for the Cycle with Statistical Models

3.1. The Value of Linear Models

We can fit a number of statistical models to US GDP over a given data period. Un-
fortunately, the three non-linear models that we consider have all been estimated
over different data periods. We will act as if they actually apply to 1947/1-2002/2,
as we believe that any biases would be such as to reinforce our conclusions.
We use two linear models. With yt being the log of US GDP the models fitted

to data over 1947/1-2002/2 are a random walk with drift for yt and an AR(1) in
growth rates ∆yt.

RW : ∆yt = .00836 + .0102et

AR(1) : ∆yt = .0055 + .3438∆yt−1 + .0096et

Data was simulated from each of these models assuming that et is n.i.d.(0, 1) and
then passed through the BBQ program to produce the range of measures sum-
marizing the business cycle discussed above. One thousand simulated series were
generated. Table 1 compares the actual and simulated characteristics. Quantities
that relate to amplitudes, cumulated movements and excess area are all multi-
plied by 100 to make them percentage changes. Focussing on the duration and
amplitude measures, it is clear that an AR(1) in growth rates can replicate the
US cycle very well, but the random walk with drift model produces expansions
that are much too strong. This role of positive serial correlation in growth rates
as being needed to produce realistic expansions was noted in Harding and Pagan
(2002). One feature both models fall down badly on is the shape of the expan-
sions, as was also noted in Harding and Pagan (2002). Basically these linear
models always predict that expansion phases look like triangles.
As we noted above it is sometimes said (without any evidence being given)

that the variability of U.S. cycle durations and amplitudes is such that a linear
model would not explain them. In fact it is the other way around; these linear
models produce too much variability in the duration and amplitude of expansions
i.e. the CV ratio for expansions is much higher than the data, and there is some
evidence of this for contractions as well. So if one is looking for a non-linear
effect to improve on the explanation of business cycle phenomena it would need
to produce less rather than more variability in phases.
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Table 1 US Business Cycle Characteristics,
Data and Linear Models: 1947/1-2002/2

Data RW AR(1)
Dur Con 2.9 2.6 3.1
Dur Expan 20.2 30.0 21.5

Amp Con -2.1 -1.3 -1.7
Amp Expan 22.0 28.6 22.3

Cum Con -4.3 -2.5 -3.9
Cum Expan 310.9 834.0 474.0

Excess Con -.056 .02 .02
Excess Expan .755 .02 -.00

CV Dur Con .343 .332 .447
CV Dur Expan .601 .857 .869

CV Amp Con -.521 -.558 -.653
CV Amp Expan .554 .838 .894
We investigate the transition between phases by simulating data from the

AR(1) model over a 750 year period. This produces at least 2800 eligible values
for St and ∆yt (owing to the use of completed phases the number is never 3000).
We then used these to estimate

Pr(St = 1|St−2 = 1,∆yt−1) = E(St|St−2 = 1,∆yt−1)

non-parametrically with a Gaussian kernel and a window width σ̂∆yt−1T
−1/5. One

can compute the same quantity with the data, Figure 2 shows a plot of these
estimated transition probabilities for the AR(1) model and data conditioned upon
the values of ∆yt−1 found in the data. Although the fit is good for positive growth
rates in period t−1, there is an over-statement of the probability that an expansion
will continue in the face of a large negative growth rate in output. It should be
noted that there are not many observations in the data at the left hand end of
the graph. Only twice in the sample was growth as small as -2% for the quarter.
As mentioned earlier we also conduct an experiment that attempts to isolate

the impact of current versus past shocks upon the nature of the business cycle.
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Fig 2 Estimated Continuation Probability of an Expansion, Data and AR(1) Models
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Figure 3.1:

Take the random walk model. We define y∗t = yt − et = µ + yt−1 and then pass
y∗t through BBQ rather than yt. If the calculus rule was being used for dating
purposes i.e. St = 1(∆y∗t > 0), we see that

Pr(St = 1) = Pr(∆y∗t > 0) = Pr(et−1 > −
µ

σ
)

and this would be the same as Pr(∆yt > 0) i.e. we would find that there would
be no difference in the average duration of expansions. The situation is more
complicated when BBQ is used but it is probably not too surprising to find that the
average durations of expansions for the randomwalk model using y∗t are unchanged
from that with yt. This is not true for the AR(1) where the durations of 3.1/21.5
become 3.1/18.5. Nevertheless it is clear that the main features of the cycle
generated by an AR(1) model come from the propogation mechanism.

3.2. The Value of a SETAR Model

Various types of SETAR models exist in the literature e.g. Pesaran and Potter
(1997), but the version we use here is that set out in van Dijk and Franses (2003).
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It has a number of extra features compared to other SETAR models in the liter-
ature, notably an ARCH effect in the errors. The model consists of the following
set of equations defining ∆yt =

1
4
ψt

ψt = φ1ψt−1 + φ2ψt−2 + φ0 + θ1CDRt−1 + θ2OHt−1 + vt

vt˜N(0,Ht)

where

Ft = 1(ψt < rF ) if Ft−1 = 0

= 1(CDRt−1 + ψt < 0) if Ft−1 = 0

Ct = 1(Ft = 1)1(ψt > rC)1(ψt−1 > rC)

CDRt = (ψt − rF )Ft if Ft−1 = 0

= (CDRt−1 + ψt)Ft if Ft−1 = 1

OHt = Ct(OHt−1 + ψt − rt)

Ht = σ2FFt−1 + σ2CORCORt−1 + σ2Ct−1

CORt = 1(Ft + Ct = 0)

φ0 = 1.52, φ1 = .35, φ2 = .21, θ1 = −.45, θ2 = −.041
σF = 5.03, σCOR = 3.64, σC = 2.81, rF = −3.51, rC = 2.04

Table 2 presents business cycle characteristics of the SETAR model as well as
other non-linear models. It is clear that the SETAR model is of little value. It
makes expansions too strong and produces much the same variability of durations
and amplitudes as the linear AR(1) model. The only way in which it improves on
the linear models is in terms of the fact that it predicts that the cumulated growth
from expansions will be around 3% higher than what would happen if growth was
constant i.e. it is closer to the shape of actual expansions, although falling well
short of the 11% registered in the data.
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Table 2 US Business Cycle Characteristics,
Data and Non-Linear Models: 1947/1-2002/2

Data SETAR Bounce Tension
Dur Con 2.9 3.3 3.1 3.2
Dur Expan 20.2 25.3 27.7 26.3

Amp Con -2.1 -1.8 -2.2 -1.6
Amp Expan 22.0 24.7 27.1 27.4

Cum Con -4.4 -4.1 -5.1 -3.1
Cum Expan 310.8 611.1 701.3 657.1

Excess Con -.056 -.177 -.078 .21
Excess Expan .755 .296 .549 .66

CV Dur Con .343 .449 .395 .398
CV Dur Expan .601 .830 .807 .758

CV Amp Con -.521 -.653 -.614 -.576
CV Amp Expan .554 .842 .745 .728
Figure 3 looks at the transition probability computation. For comparison we

include the AR(1) model as well as the value found from the data. Although
there is little difference between the estimated probabilities from the SETAR and
AR(1) models for most values of ∆yt−1, the striking feature is that, for large
negative growth rates, the SETAR model actually predicts that there will be a
high probability of a continuation of an expansion. This is because, in simulation,
it produces only a few observations that have negative growth of this magnitude,
and they coincide with St mainly being unity i.e. an expansion. As we have
said previously there are only two observations in the data with ∆yt−1 being less
than -.02 and both of these are associated with St = 0. A priori one might have
expected that this would happen so that the opposite prediction by the SETAR
model suggests that it has a bias towards expansions (indeed we have already seen
that in the duration statistics)

In order to understand the results on the transition probabilities it is worth
computing E(ψt|ψt−1) for the SETAR model and the linear model. These are
presented in Figure 4 as a cross plot of E(ψt|ψt−1) against the values of ψt−1 in

14



Fig 3 Estimated Continuation Probabilities of an Expansion, Data, AR(1) and SETAR Models
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Figure 3.2:

the data set. Also on the same graph are the matched data points. We computed
E(ψt|ψt−1) using a non-parametric estimator from 30000 simulated data points
and a Gaussian kernel (note that the data has been annualized and made into
percentage changes in this graph) It is apparent that a few extreme observations
have had a large effect upon the estimates of the SETAR model. The largest
negative growth rate in the sample was in 1958/1 at an annualized rate of around
-11%, but it was followed in 1958/2 with a positive growth rate of around 2.4%.
This somewhat rare occurrence becomes a population characteristic of the cali-
brated SETAR model and, whenever a very large negative growth rate occurs in
the simulations, it induces a very rapid “bounce-back” effect.
Roughly speaking we might think that recessions are those points that have two

successive periods of negative growth and these are in the lower left hand quadrant.
Notice that the SETAR model never predicts any events in that quadrant; the
linear model does much better on that score. The upshot of the effect seen in these
graphs is to make recessions terminate too readily and that is what the transition
probabilities tell us. It is also interesting to observe that the conditional mean
from the SETAR model is virtually identical to that from the linear model, except
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Fig 4 E(y(t)|y(t-1)) for SETAR Model and Data
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Figure 3.3:

when growth rates become very negative. This will mean that the forecasts are
unlikely to differ much unless one has encountered a steep drop in output. At
that point it is not clear which of the forecasts one would prefer. In any case one
should be aware that the differences are associated with extreme realizations.
Our final exercise with this model was to construct y∗t from ψ∗t = ψt − vt.

The durations of contractions and expansions in y∗t become 3.2/20.1, and it would
therefore seem that the current shock vt is a major determinant of the charac-
teristics of the business cycle predicted by this model. Such dependence on an
unpredictable shock may not make it a good vehicle for forecasting business cycle
developments.

3.3. The Value of a Bounce-back Model

3.3.1. The Cycle Characteristics of the Model

The SETAR model has the property that there are forces leading to recovery that
derive from the current depth of the recession, captured by the CDRt variable.
So there is a type of error correction type mechanism at work. An alternative
approach that is motivated by observation of rapid growth coming out of a re-
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cession is to provide a “bounceback” mechanism. A model that was suggested
to endogenize such a bounceback response was set out in Kim, Morley and Piger
(2002) and is recorded below. Here ∆yt =

ψt
100
and

ψt = µ0 + µ1zt + λ(
6X

j=1

ξt−j) + εt

εt˜N(0, σ
2)

Pr(ξt = 0|ξt−1 = 0) = p; Pr(ξt = 1|ξt−1 = 1) = q

µ0 = .868, µ1 = −1.877
λ = .246, q = .952, p = .693

σ = .745

Table 2 shows that, just like the SETAR model, expansions are very strong and
inconsistent with the data. It improves on the SETAR model in having variability
in the amplitudes of expansions being closer to that of the data and it comes quite
close to replicating the shape of expansions as summarized by the “excess area”
statistic.
Figure 5 presents the transition probability computations. The results cer-

tainly look a little peculiar. Nevertheless, the model clearly shares the difficulty
of the SETAR model that there is a tendency for expansions to continue in the
face of a large negative growth rate and this does not seem desirable. Figure
6 is the equivalent of figure 4 for this model. The influence of the observation
from1958/1 is still apparent but is not as extreme as before.
Finally, unlike the SETAR model, the cycle in the y∗t after the elimination of

εt features contractions of 3.0 quarters and expansions of 27.7 quarters, showing
that the overall cycle is largely due to the past history of shocks rather than the
contemporaneous one.

3.3.2. A Look at MS Models with the Bounceback Model

The history of recent business cycle analysis is replete with statements about
asymmetry in the business cycle and the need for non-linear models to produce
this feature. After the obligatory reference to Keynes (1936) and Burns and
Mitchell (1946) as mentioning such a characteristic e.g. in Psaradakis and Sola
(2002), such authors either proceed to design tests of symmetry of the “cyclical
component” or to estimate non-linear models which are said to account for the
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Fig 5 Estimation Continuation Probability of an Expansion, Data, AR(1) and Bounceback 
Model
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Figure 3.4:

Fig 6 E(y(t)|y(t-1) for Bounceback Model and Data
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asymmetry. Nowhere is it mentioned that Keynes and Burns and Mitchell were
referring to the asymmetry in the y cycle, which is clearly evident in Table 1 where
expansions are four to five time more durable than contractions. If Keynes and
Burns and Mitchell had been looking at the z cycle, which the authors mentioned
above are mostly doing, then they would have seen such mild asymmetry as to
probably not evince any comment.
The bounceback model is a Markov Switching (MS) model and so is a useful

vehicle for examining a number of issues that arise over the utility of MS models
in business cycle analyis. Foremost among these is the question of how much of
the asymmetry in the y cycle comes from the fact that there is long-run growth
and how much comes from the non-linearity induced by an MS model. It was
argued in Pagan (1997) and Harding and Pagan (2002) that it was quite likely to
be due to the first of these features. Neverthless there is a substantial literature
asserting the latter e.g. Psaradakis and Sola (2002), who actually misinterpret the
contention in Harding and Pagan (2002), claiming that the latter’s investigation
is into symmetry in cycles in ∆yt. Whilst one uses the information in ∆yt to
determine the nature of the cycle in yt, it is not the cycle in ∆yt that is being
investigated.
To determine the relative contributions of both of the effects we simply mean

correct the simulated ∆yt. This eliminates the long-run growth but preserves any
non-linearity. When we do this the duration of contractions become 5.5 quarters
and that of expansions 6.5 quarters, versus the 3.1 and 27.8 of the model with the
long-run growth included. This illustrates the fact that little of the asymmetry in
the business cycle is accounted for by MS models.1

So why is it that MS models are often advocated as a tool for business cycle
analysis? One reason is that, despite what we have shown above, it is often
claimed that MS models produce the asymmetry that is seen in the y cycle. Such
a claim is based upon identification of 1

1−Pr(ξt=1|ξt−1=1)
with the average duration

of expansions. Thus, based upon the numbers for those probabilities found above,
the bounceback model would imply that contractions were 3.3 quarters long and
expansions are 20 quarters long. Now, as we have also seen above, the actual
expansion lengths coming from the St generated by the bounceback model is very
much higher at 27.7 quarters. How does this discrepancy come about? To answer
that it needs to be recognized that quantities such as 1

1−[Pr(ξt=1|ξt−1=1)]
measure

the expected time spent in the state ξt = 1 not that spent in St = 1. One might

1In fact this is true of all the non-linear models discussed in this paper.
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roughly summarize the differences by saying that the transition probabilities for
the ξt states are concerned with the time spent in low and high growth states,
whereas those associated with St involve the time spent in sequences of negative
and positive growth rates. These are clearly very different events. It is also the
case that, even within the MS modelling tradition, ξt does not measure the states
of expansion and contraction. Instead, that is done with the index ζt = 1([Pr(ξt =
1)|∆yt−1, ....]− .5) if one restricts attention to the predicted state (rather than the
smoothed one based on all information). In most cases it is a series on ζt that
is compared to the St from BBQ type dating operations when authors comment
that the MS model produces turning point dates that match with those made
with NBER type methods. So one really needs to compute 1

1−Pr(ζt=1|ζt−1=1)
and

not 1
1−Pr(ξt=1|ξt−1=1)

if one wants to find an estimate of the expected expansion
phase length implied by the MS model. The alternative approach is to do what
was done above - pass the simulated data from an estimated MS model through
BBQ and then compare that to the data. Then one is performing the same
operation and the sets of computed durations are fully comparable.
The failure to carefully distinguish between the states ξt, ζt and St (where the

latter designate the binary indicator established by applying some turning point
rule) leads to other confusions. Thus there have been many studies of whether
there is duration dependence within business cycles i.e. does the conditional
probability (say) P (St|St−1 = 0) depend upon the period of time that one has
been in the state S = 0? This hypothesis has been tested in a number of ways,
mostly with duration data derived from the St e.g. Diebold and Rudebusch (1990).
More recent studies however e.g. Durland and McCurdy (1994), ask whether
Pr(ξt|ξt−1 = 0) depends on the time spent in the state ξ = 0. Now it is highly likely
that there will be duration dependence in the St states since Kedem (1980) showed
that the St would have infinite order serial correlation when St was found using the
calculus rule and ∆yt was finitely serially correlated i.e. the transition probability
from St−1 to St depends upon St−j(j > 1).2 Thus either an AR(1) model or an
MS model with constant Pr(ξt|ξt−1) will certainly produce duration dependence in
the St with any dating rule, given what we know about ∆yt. Accordingly, findings
about the presence/absence and nature of duration dependence in the ξt have few
implications for the same features in the St.Models in which Pr(ξt|ξt−1) depend on
the past history of ξt are interesting non-linear models but they should be looked

2Harding and Pagan (2001) find that the serial correlation in the St is of higher than first
order when the "modified" rule given earlier is used and the ∆yt have no serial correlation. This
outcome is likely to be true of the BBQ statistics as well
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at in this vein and not because they tell us anything about duration dependence
in the cycle.
The other reason often given for favouring MS models is that the estimated

model can be used to compute P (ξt = 1|∆yt−1...), and this might be used as an
input into a forecast of what ζt would be. It is generally said that the turning
point approach cannot do this but, since our phase transition measure is exactly
about computing such quantities with St, this contention is incorrect.

3.4. The Value of a Tension Indicator Model

The model is developed in De Jong et al(2003). It consists of the equations

∆yt = g∗ + [mt − vGt−2 + λ(∆yt−2 − g∗)] + σtεt

εt˜n.i.d.(0, 1)

Gt =
∞X
i=0

δi(∆yt−i − g∗)

mt = aj + bjξt

t−t(j−1)−1X
τ=1

dτ−1

aj˜N(α0 + α1zj, σ
2
a)

zj = 1 if expansion;

= 0 otherwise

bj˜ exp onential(δ0)

ξt = 1 if expansion

= −1 otherwise
Pr(ξt+1 = −ξt|ξt;Gt) =

1

1 + exp(β0 − β1ξtGt)

σ2t = ω0 + ω1σ
2
t−1 + ω2y

2
t−1

In their model g∗ is allowed to vary over time according to a third degree poly-
nomial but this creates problems for a long simulation so we have set it to a
constant value, the average growth rate in GDP over the period 1947:2-2002:3.
The primary feature of the model is the tension indicator Gt, but the growth rate
also changes according to regimes determined by ξt, just as in a Markov switching
model. The values of the mean growth rate in each regime are also realizations of
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a binary random variable. Finally there is some GARCH type behaviour in the
growth rate. Parameter values for v, λ, δ, d, aj.bj , ωj, βj, αj and σ2a are taken from
their Table 2.
The results for the business cycle characteristics are in Table 2. The model

improves on the bounce-back model by reducing the length and strength of expan-
sions, although these are still much larger than in the data. It has good success
in replicating the variability and shapes of cycles, however, which points to the
need for statistical models of the business cycle to incorporate the type of effects
it contains.
Given that it seems to be a reasonable match to many of the characteristics

it is somewhat disappointing to compute the transition probability in Figure 7
and to observe that the model has a very strong tendency to continue in the
expansion phase in the face of negative growth. In this respect it is inferior to
the other non-linear models. It is possible that this outcome is partly due to the
fact that g∗ is a constant in the simulation but we cannot allow it to change as
a polynomial in time as in their empirical work. In any case it is clear that one
could not continue with a polynomial term even with empirical work. Figure 8
suggests that the parameter estimates have been greatly influenced by a small
number of data points and this seems the most likely explanation for the business
cycle behaviour it predicts. Overall the model looks promising in that it does
produce phases with less variability than the linear models.

4. Conclusion

The non-linear cycle models studied in this paper manage to get an improved fit
to the business cycle features of shape and variability over what linear models can
produce. But they do so by having a very strong re-bound effect. This tends to
make expansions continue much longer than they do in reality. Interestingly, the
fitted models seem to be very influenced by a single point in 1958 when a large
negative growth rate in GDP was followed by good positive growth in the next
quarter.This seems to have become embedded as a population characteristic and
results in overly long and strong expansions. That feature is likely to be a problem
for forecasting if another large negative growth rate was observed.
We need a model that can explain a large number of cycle features simultane-

ously. When univariate models of GDP have been built it seems as if one manages
to explain one feature only at the expense of another. The current generation of
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Fig 7 Estimated Continuation Probability of Expansion, Data, AR(1) and Tension Indicator 
Model
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Figure 3.6:

Fig 8 E(y(t)|y(t-1)) for Tension Indicator Model, Linear Model and Data
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non-linear univariate models have become extremely complicated and one suspects
that we have reached the limit concerning the ability of these models to generate
realistic business cycle and that the introduction of multi-variate models would
be beneficial.
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