16,967 research outputs found

    Spin-selective localization due to intrinsic spin-orbit coupling

    Full text link
    We study spin-dependent diffusive transport in the presence of a tunable spin-orbit (SO) interaction in a two-dimensional electron system. The spin precession of an electron in the SO coupling field is expressed in terms of a covariant curvature, affecting the quantum interference between different electronic trajectories. Controlling this curvature field by modulating the SO coupling strength and its gradients by, e.g., electric or elastic means, opens intriguing possibilities for exploring spin-selective localization physics. In particular, applying a weak magnetic field allows the control of the electron localization independently for two spin directions, with the spin-quantization axis that could be "engineered" by appropriate SO interaction gradients.Comment: 7 pages, 1 figur

    Fluctuation theorem for entropy production during effusion of a relativistic ideal gas

    Full text link
    The probability distribution of the entropy production for the effusion of a relativistic ideal gas is calculated explicitly. This result is then extended to include particle and anti-particle pair production and annihilation. In both cases, the fluctuation theorem is verified.Comment: 6 pages, no figure

    Thermodynamics of the L\'evy spin glass

    Full text link
    We investigate the L\'evy glass, a mean-field spin glass model with power-law distributed couplings characterized by a divergent second moment. By combining extensively many small couplings with a spare random backbone of strong bonds the model is intermediate between the Sherrington-Kirkpatrick and the Viana-Bray model. A truncated version where couplings smaller than some threshold \eps are neglected can be studied within the cavity method developed for spin glasses on locally tree-like random graphs. By performing the limit \eps\to 0 in a well-defined way we calculate the thermodynamic functions within replica symmetry and determine the de Almeida-Thouless line in the presence of an external magnetic field. Contrary to previous findings we show that there is no replica-symmetric spin glass phase. Moreover we determine the leading corrections to the ground-state energy within one-step replica symmetry breaking. The effects due to the breaking of replica symmetry appear to be small in accordance with the intuitive picture that a few strong bonds per spin reduce the degree of frustration in the system

    Superconductivity-Related Insulating Behavior

    Full text link
    We present the results of an experimental study of superconducting, disordered, thin-films of amorphous Indium Oxide. These films can be driven from the superconducting phase to a reentrant insulating state by the application of a perpendicular magnetic field (BB). We find that the high-BB insulator exhibits activated transport with a characteristic temperature, TIT_I. TIT_I has a maximum value (TIpT_{I}^p) that is close to the superconducting transition temperature (TcT_c) at BB = 0, suggesting a possible relation between the conduction mechanisms in the superconducting and insulating phases. TIpT_{I}^p and TcT_c display opposite dependences on the disorder strength.Comment: Tex file and 5 figures; Revised version; To appear in Phys. Rev. Lett. (2004

    Post-training load-related changes of auditory working memory: An EEG study

    Get PDF
    Working memory (WM) refers to the temporary retention and manipulation of information, and its capacity is highly susceptible to training. Yet, the neural mechanisms that allow for increased performance under demanding conditions are not fully understood. We expected that post-training efficiency in WM performance modulates neural processing during high load tasks. We tested this hypothesis, using electroencephalography (EEG) (N = 39), by comparing source space spectral power of healthy adults performing low and high load auditory WM tasks. Prior to the assessment, participants either underwent a modality-specific auditory WM training, or a modality-irrelevant tactile WM training, or were not trained (active control). After a modality-specific training participants showed higher behavioral performance, compared to the control. EEG data analysis revealed general effects of WM load, across all training groups, in the theta-, alpha-, and beta-frequency bands. With increased load theta-band power increased over frontal, and decreased over parietal areas. Centro-parietal alpha-band power and central beta-band power decreased with load. Interestingly, in the high load condition a tendency toward reduced beta-band power in the right medial temporal lobe was observed in the modality-specific WM training group compared to the modality-irrelevant and active control groups. Our finding that WM processing during the high load condition changed after modality-specific WM training, showing reduced beta-band activity in voice-selective regions, possibly indicates a more efficient maintenance of task-relevant stimuli. The general load effects suggest that WM performance at high load demands involves complementary mechanisms, combining a strengthening of task-relevant and a suppression of task-irrelevant processing

    Influence of diffractive interactions on cosmic ray air showers

    Full text link
    A comparative study of commonly used hadronic collision simulation packages is presented. The characteristics of the products of hadron-nucleus collisions are analyzed from a general perspective, but focusing on their correlation with diffractive processes. One of the purposes of our work is to give quantitative estimations of the impact that different characteristics of the hadronic models have on air shower observables. Several sets of shower simulations using different settings for the parameters controlling the diffractive processes are used to analyze the correlations between diffractivity and shower observables. We find that the relative probability of diffractive processes during the shower development have a non negligible influence over the longitudinal profile as well as the distribution of muons at ground level. The implications on experimental data analysis are discussed

    Storage capacity of correlated perceptrons

    Full text link
    We consider an ensemble of KK single-layer perceptrons exposed to random inputs and investigate the conditions under which the couplings of these perceptrons can be chosen such that prescribed correlations between the outputs occur. A general formalism is introduced using a multi-perceptron costfunction that allows to determine the maximal number of random inputs as a function of the desired values of the correlations. Replica-symmetric results for K=2K=2 and K=3K=3 are compared with properties of two-layer networks of tree-structure and fixed Boolean function between hidden units and output. The results show which correlations in the hidden layer of multi-layer neural networks are crucial for the value of the storage capacity.Comment: 16 pages, Latex2

    Correlations between hidden units in multilayer neural networks and replica symmetry breaking

    Full text link
    We consider feed-forward neural networks with one hidden layer, tree architecture and a fixed hidden-to-output Boolean function. Focusing on the saturation limit of the storage problem the influence of replica symmetry breaking on the distribution of local fields at the hidden units is investigated. These field distributions determine the probability for finding a specific activation pattern of the hidden units as well as the corresponding correlation coefficients and therefore quantify the division of labor among the hidden units. We find that although modifying the storage capacity and the distribution of local fields markedly replica symmetry breaking has only a minor effect on the correlation coefficients. Detailed numerical results are provided for the PARITY, COMMITTEE and AND machines with K=3 hidden units and nonoverlapping receptive fields.Comment: 9 pages, 3 figures, RevTex, accepted for publication in Phys. Rev.
    • …
    corecore